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1. Supplementary Figures 

 

 

Fig. A1. Distributions of punishment strategies in each experiment, excluding participants with more 
than 10 Quiz Fails (a and b) and those more than 3 Quiz Fails (c and d), respectively. These plots suggest 
that the distribution of strategies remains stable when we consider different subsets of participants 
based on their number of attempts on the control questions.   
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Fig. A2. Distributions of failed attempts at the compulsory control questions, broken down by 
punishment strategy in each experiment. Each jittered data point shows a participant. The y-axis is 
displayed in log scale to account for outliers with many attempts before passing the 9 control 
questions (7 of which are open questions about game payoffs). Diamond symbols show the means.    
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Fig. A3. Distributions of punishment strategies in each experiment, broken down by cooperation 
decision in Stage 1.  
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Fig. A4. Distribution of deduction points for independent punishers who defected in Stage 1 in each 
experiment. As in the equivalent figure showing behavior of independent punishers who cooperated 
in Stage 1 (main text Fig. 3a,b), vertical axes show counts. Note that, in contrast to cooperators, 
defectors do not equalize payoffs between themselves and their partners by assigning 8 deduction 
points (or rather, only does so if they believe that their partner assigns 8 deduction points to them as 
well), potentially explaining why this response was much more frequent among cooperators than 
among defectors.   
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Fig. A5. Deduction points assigned by cooperators, broken down by punishment strategy in each 
experiment. Sizes of dots indicate numbers of observations. 
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Fig. A6. Deduction points assigned by defectors, broken down by punishment strategy in each 
experiment. Sizes of dots indicate numbers of observations.  

  



Page 8 of 50 
 

 
Fig. A7. Effects of conditional punishment strategies on the emergence and breakdown of cooperation. 
Lines show the cumulative probability of cooperation to rise above 75 percent (a) or fall below 25 
percent (b), as a function of time. Time is shown on a logarithmic scale, and each line represents 500 
simulation runs. Across both panels, we hold fixed the frequency of independent punishers at 30%. 

𝑄𝑁𝐸  is the frequency of norm enforcement, and 𝑄𝐶𝑃 is the frequency of conformist punishment. 
Frequencies of these conditional strategies were chosen such that—according to our analytical 
results—cooperation would emerge (Panel a) or break down (panel b) in the long run. Initial beliefs 
regarding cooperation and punishment levels start low in Panel a (𝑏𝑐 = 𝑏𝑝 = 0.25), and high in Panel 

b (𝑏𝑐 = 𝑏𝑝 = 0.75; see Methods for details). Each simulation runs for 100,000 (105) periods. Further 

simulation settings: n = 100, m = 10, 𝑢 = 0.5, ε=0.05.  
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Fig. A8. Frequency of cooperation for different population compositions and different initial 

conditions. Colors (and number in the cells) show average percentages of cooperation across all 

periods of the simulation (see right hand side for color key). Each cell represents 30 simulation runs. 

Initial beliefs regarding cooperation and punishment start low (Panel a; 𝑏𝑐 = 𝑏𝑝 = 0.25), or high 

(Panel b; 𝑏𝑐 = 𝑏𝑝 = 0.75). 𝑄𝐼𝑃 is the frequency of independent punishment, 𝑄𝑁𝐸  is the frequency of 

norm enforcement, and 𝑄𝐶𝑃  is the frequency of conformist punishment. Each simulation runs for 

100,000 (105) periods. Further simulation settings: n = 100, m = 10, 𝑢 = 0.5, ε=0.05. These analyses 

give an overall impression of how cooperation levels in our model depend on the relative frequencies 

of independent punishment (QIP), norm enforcement (QNE) and conformist punishment (QCP). The 

results suggest that conditional punishment strategies can play a particularly important role in the 
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emergence and persistence of cooperation when independent punishment occurs at intermediate 

frequencies. That is, when independent punishment occurs at low frequencies, cooperation is unlikely 

to arise regardless of conditional punishment. Conversely, when independent punishment occurs at 

high frequencies, conditional punishment is not needed for cooperation to arise and persist. Overall, 

these simulations confirm the analytical model results presented in sections 3.3. and 3.4 of this 

Appendix. For the effects of the relative frequencies of punishment strategies on the speed of the 

dynamics (emergence or collapse of cooperation), see Figure A9.   
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Fig A9. Waiting time for transitions between low and high cooperation for different population 
compositions. The color of each cell shows the median number of waiting periods across 30 simulation 
runs for cooperation to rise above 75% (Panel a) or fall below 25% (Panel b). Initial beliefs regarding 
cooperation and punishment start low in Panel a (𝑏𝑐 = 𝑏𝑝 = 0.25), and high in Panel b (𝑏𝑐 = 𝑏𝑝 =

0.75). 𝑄𝐼𝑃 is the frequency of independent punishment, 𝑄𝑁𝐸  is the frequency of norm enforcement, 
and 𝑄𝐶𝑃 is the frequency of conformist punishment. The plots are based on the same simulation data 
used for Fig. A8.  
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Fig A10. Effects of ‘Decreasing Punishment’ (DP) (cf. Fig 1a, blue bar) on cooperation dynamics. 
Agents with this strategy punish free riders if they believe cooperation rates are lower than 50% (𝑏𝑐 < 
0.5). Triangles show outcomes of simulations that vary the relative proportion of norm enforcement, 
conformist punishment, and decreasing punishment, with independent punishment fixed at 30%. The 
top row shows the percentage of periods for which cooperation was higher than 75% for each 
combination of strategies, whereas the bottom row shows the frequency of cooperation over all 
periods. 𝑄𝐷𝑃 is the frequency of decreasing punishment, 𝑄𝑁𝐸  is the frequency of norm enforcement, 
and 𝑄𝐶𝑃is the frequency of conformist punishment. Results are the average outcome of simulations 
where cooperation either started high (𝑏𝑐 = 𝑏𝑝 = 0.75) or low (𝑏𝑐 = 𝑏𝑝 = 0.25). In particular, for 

each possible combination of 𝑄𝑁𝐸, 𝑄𝐶𝑃, and 𝑄𝐷𝑃 averages are based on 10 simulations (5 with high 
and 5 with low initial beliefs). Each simulation runs for 10,000 (104 ) periods. Further simulation 
settings: n = 100, m = 10, 𝑢 = 0.5, ε=0.05.   
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2. Supplementary Tables 

Table A1. Dropouts during the experiment. The table show the number of participants completing 

each of the different phases of our experiment. About one in three individuals who clicked the study 

link on Amazon Mechanical Turk (MTurk) did not pass the control questions. Many of these individuals 

clicked the link and never moved beyond the first page of the experiment (a welcome screen), while 

others took multiple attempts at solving the control questions but did not succeed in completing them 

(see Section 4 in this Appendix for screenshots of the control questions). Dropouts were rare among 

those participants who did pass the control questions. The results reported in our paper are based on 

the 999 participants who completed the punishment stage of our experiment (Stage 2).  

 
 Entered the 

experimental 
pages 

Passed control 
questions for 

Stage 1 

Completed 
Stage 1 

Passed 
control 

questions 
for Stage 2 

Completed 
Stage 2 

Completed the 
game  

and the 
questionnaire 

Number of 
participants 
(percentage) 

1,624 
(100%) 

1,061 
(65.3%) 

1,058 
(65.1%) 

1,008 
(62.1%) 

999 
(61.5%) 

992 
(61.1%) 
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Table A2. Determinants of punishment. The table displays results from ordinary least squares (OLS) 

regressions of the number of deduction points assigned to defecting partners. The predictor 

‘Cooperation in the reference group’ ranges from 0 to 10, corresponding to the 11 situations 

presented in Stage 2 of the CC experiment. Similarly, the predictor ‘Punishment in the reference group’ 

ranges from 0 to 10, reflecting the 11 situations in the CP treatment. Numbers in parentheses are 

robust standard errors (SEs) corrected for clustering at the participant level. P-values are presented 

below the SEs. Model (i) shows that in the CC experiment, an increase of 10% of cooperators in the 

reference group leads to an average increase of 0.051 deduction points assigned to a defecting 

interaction partner (F-test: P<0.01). Model (ii) shows that in the CP experiment, an average increase 

of one deduction point assigned in the reference group leads to an average increase of about 0.156 

deduction points (F-test: P<0.001).  

 

  CC experiment CP experiment 

 (i) (ii) 

Cooperation in the reference group 
(1 unit = 10% increase) 

0.051 
(0.016) 
P=0.002 

 

Punishment in the reference group 
(mean number of deduction points 
assigned in the reference group) 

 0.156 
(0.016) 
P<0.001 

Cooperator  
(1 if the punisher cooperated in stage 1; 
0 otherwise) 

1.239 
(0.249) 
P<0.001 

1.776 
(0.241) 
P<0.001 

Male 0.199 
(0.257) 
P=0.438 

0.212 
(0.260) 

P= 0.416 

Age -0.012 
(0.013) 
P=0.340 

0.019 
(0.012) 
P=0.100 

Constant 1.907 
(0.495) 
P<0.001 

-0.271 
(0.473) 
P=0.567 

Observations 5,434 5,478 

Number of participants 494 498 

R-squared 0.038 0.095 
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3. Supplementary Analysis 

Contents 

3.1. Setting 

3.2. Strategies 

 3.2.1. Cooperation 

 3.2.2. Punishment 

3.3. Short-run (Nash) equilibrium 

3.4. Long-run equilibrium 

3.5. Proofs 

 3.5.1. Proof of Proposition 1 

 3.5.2. Proof of Proposition 2 

 3.5.3. Proof of Proposition 3 

 

 

Here we use analytical methods to evaluate our model, addressing how the experimentally identified 

punishment strategies interact to shape the dynamics of cooperation. Section 1 describes and 

formalizes the interaction setting. Section 2 describes the strategies we consider. Sections 3 and 4 

analyze the effects of conditional punishment strategies on cooperation in the short run and in the 

long run, respectively. 

 

3.1. Setting  

We consider the following decision setting, which is similar to the task used in the experiment. Two 

agents, A and B, are randomly drawn from a large population to play a two-stage game. In Stage 1, 

they can either cooperate or defect. Table A3 shows how the Stage 1 material payoffs for both agents 

depend on their choices.   
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Table A3. Payoffs from stage 1. 

  Agent B 

  Cooperate Defect 

 
Agent A 

Cooperate 𝑎, 𝑎 𝑑, 𝑒 

Defect 𝑒, 𝑑 𝑐, 𝑐 

Note: we consider a prisoner’s dilemma, which is characterized by 𝑒 >  𝑎 >  𝑐 >  𝑑 . In the 
experiment, the values used were: 𝑒 = 25, 𝑎 = 18, 𝑐 = 16, 𝑑 = 9.  
 

In Stage 2, each agent can punish their partner if their partner defected in Stage 1. We depart from 

the experiment by considering binary punishment decisions (rather than choosing integers on a 0-10 

scale). Punishment incurs a cost 𝑘 > 0 to the punisher and a loss 𝑙 > 0 to the defector. As consistent 

with our experiment, our model only considers punishment of defectors and ignores antisocial 

punishment of cooperators. The final payoffs from the game are the payoffs from Stage 1 minus the 

costs of conducting punishment and losses from being punished in Stage 2.  

 

We focus on binary punishment decisions for the sake of exposition and tractability. Compared with 

the task in our experiment, focusing on binary punishment decisions in our model is not without loss 

of generality. Binary punishment excludes the possibility that an individual’s punishment is not weakly 

monotonic—i.e., that it is neither independent, nor weakly increasing or weakly decreasing—in 

response to increasing cooperation rate or punishment rate in the population. Our experimental 

results, however, suggest that non-monotonic punishment behavior is much less common than 

independent punishment, norm enforcement, and conformist punishment (Fig. 1 in the main text). 

Furthermore, the group of participants who show non-monotonic punishment behavior becomes very 

small (less than 10 percent) if we exclude participants who had difficulty answering the nine 

compulsory control questions (Fig. A7), suggesting that such non-monotonic behavior is likely to be 

the result of inattentive choice behavior, rather than a real preference. 

 

3.2. Strategies 

 

3.2.1. Cooperation 

We assume that an agent’s choice to cooperate or defect depends on which choice generates the 

highest expected material payoffs. Let 𝑏𝑐 ∈ [0,1] denote an agent’s belief about the cooperation rate 
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in the population, and 𝑏𝑝 ∈ [0,1] the punishment rate. From Table A3 we can see that the expected 

payoff from choosing cooperate is  

(1)  𝑏𝑐𝑎 + (1 − 𝑏𝑐)𝑑. 

The expected payoff from choosing defect is   

(2)  𝑏𝑐𝑒 + (1 − 𝑏𝑐)𝑐 − 𝑏𝑝𝑙. 

An agent cooperates if and only if (1) ≥ (2) (assuming they cooperate if expected payoffs are the 

same). Rearranging the terms leads to the condition 

(3)  𝑏𝑝 ≥ 𝜃𝐶 ≡
1

𝑙
[𝑏𝑐(𝑒 − 𝑎) + (1 − 𝑏𝑐)(𝑐 − 𝑑)]. 

This shows that an agent cooperates if and only if their beliefs of being punished if they defect (𝑏𝑝) 

exceeds a threshold. This threshold is linearly increasing in the temptation to defect 𝑏𝑐(𝑒 − 𝑎) + (1 −

𝑏𝑐)(𝑐 − 𝑑), and decreasing in the loss from being punished 𝑙. In the analysis presented in the main 

text, we assume 𝜃𝐶 = 0.5. Here, we consider the general case of arbitrary threshold values.  

 

3.2.2. Punishment  

Our implementation of punishment strategies is informed by our experimental results. We consider 

four distinct ‘types’ of agents: i) independent punishers who punish independently of 𝑏𝑐  and 𝑏𝑝 , 

ii) norm enforcers who punish if and only if 𝑏𝑐 is high enough, and iii) conformist punishers who punish 

if and only if 𝑏𝑝 is high enough; and iv) non-punishers, who never punish. For simplicity and ease of 

illustration, we assume that the four strategies above are mutually exclusive and stable: each 

individual has a unique strategy that doesn’t change over time. 

The frequencies of punishment types in the population—independent punishers ( 𝑄𝐼𝑃 ), norm 

enforcers (𝑄𝑁𝐸), conformist punishers (𝑄𝐶𝑃) and non-punishers (𝑄0)—sum up to 1. Agents do not 

know the punishment strategy of their interaction partners. Norm enforcers punish if and only if  

𝑏𝑐 ≥ 𝜃𝑁𝐸 . Conformist punishers punish if and only if 𝑏𝑝 ≥ 𝜃𝐶𝑃 . In the main text, we assume 

 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5. Here we will consider the case of arbitrary threshold values.  Table A4 summarizes 

all model parameters.  
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Table A4. Collection of model parameters. 

Agent-level parameters 

𝑏𝑐 ∈ [0,1] An agent’s belief about the cooperation rate in the population 

𝑏𝑝 ∈ [0,1] An agent’s belief about the punishment rate in the population 

𝜃𝐶 ≥ 0 
If and only if 𝑏𝑝 ≥ 𝜃𝐶 then the agent will cooperate; derived from 

1

𝑙
[𝑏𝑐(𝑒 −

𝑎) + (1 − 𝑏𝑐)(𝑐 − 𝑑)] 

𝜃𝑁𝐸 ≥ 0 If and only if 𝑏𝑐 ≥ 𝜃𝑁𝐸 then norm enforcers will punish  

𝜃𝐶𝑃 ≥ 0 If and only if 𝑏𝑝 ≥ 𝜃𝐶𝑃 then conformist punishers will punish 

Population-level parameters 

𝑛 Number of agents 

𝑄0 ∈ [0,1] Frequencies of non-punishers 

𝑄𝐼𝑃 ∈ [0,1] Frequencies of independent punishers 

𝑄𝑁𝐸 ∈ [0,1] Frequencies of norm enforcers 

𝑄𝐶𝑃 ∈ [0,1] Frequencies of conformist punishers 

𝑇 Number of periods 

𝑚 Number of sampling agents 

𝑆 Set of strategy profiles in the population (the state space of the dynamic) 

𝑢 ∈ (0,1) Probability of having an opportunity to update 

𝜀 ∈ (0,1) Probability of making mistakes when updating 

𝑃𝜀 ∈ 𝛥(𝑆) Stationary distribution of the stochastic dynamic with 𝑚 = 𝑛 

𝑃 ∈ 𝛥(𝑆) Limit distribution of 𝑃𝜀  as 𝜀 → 0; used to define long-run equilibrium 

 

We characterize short-run (Nash) equilibria and long-run equilibria of the game. First, we show that 

there are often two Nash equilibria: one in which all agents cooperate, and another in which all agents 

defect. Second, we analyze how the relative frequencies of the different punishment strategies 

(𝑄𝐼𝑃, 𝑄𝑁𝐸 , 𝑄𝐶𝑃, 𝑄0) affect the likelihood of either equilibrium to emerge and persist in the long run.  

 

3.3. Short-run (Nash) equilibrium 

Proposition 1 shows the conditions under which cooperation can be sustained in the short run. Agents 

do not know the type of agent with whom they are matched. As is standard in the economic literature, 

we assume that agents have a common prior on the population composition, which corresponds to 

(𝑄𝐼𝑃, 𝑄𝑁𝐸 , 𝑄𝐶𝑃, 𝑄0). In the next section ‘Long-run equilibrium’, we will address the problem of how 
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agents form and update beliefs over time. Exogenous payoff parameters of the game determine the 

equilibria through their effects on the thresholds 𝜃𝐶 , 𝜃𝑁𝐸, and 𝜃𝐶𝑃.  

Proposition 1.  (Nash equilibrium) 

1. If 𝑄0 > 1 −
𝑛−1

𝑛
𝜃𝐶 , then in every Nash equilibrium all agents defect.  

2. If 𝑄𝐼𝑃 ≥
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶, or if 𝑄𝐼𝑃 > 𝜃𝐶𝑃 and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥

1

𝑛
+

𝑛−1

𝑛
𝜃𝐶, then in every Nash 

equilibrium all agents cooperate.  

3. If 𝑄0 < 1 −
1

𝑛
−

𝑛−1

𝑛
𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃}, then there exists a Nash equilibrium in which all agents 

cooperate, and all agents (except non-punishers) punish defectors.  

4. If 𝑄𝐼𝑃 <
𝑛−1

𝑛
𝑚𝑖𝑛{𝜃𝐶 , 𝜃𝐶𝑃}, then there exists a Nash equilibrium in which all agents defect, 

and only those punishing independently punish defectors.  

The proof of the proposition is provided at the end of this section. The proposition states that, first, if 

there are many agents who do not punish (𝑄0 exceeds a critical threshold), then all agents defect in 

equilibrium. This result is intuitive: if the likelihood of being punished after defection is sufficiently low, 

then agents will defect to maximize their expected material payoffs. Second, if there is a high enough 

level of independent punishment such that cooperation is the payoff maximizing choice for all 

individuals (𝑄𝐼𝑃 ≥
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶), then all agents cooperate in equilibrium. Similarly, if there are enough 

independent punishers such that their behavior triggers punishment by conformist punishers (𝑄𝐼𝑃 >

𝜃𝐶𝑃), and their joint number is high enough to make cooperation the payoff maximizing choice for all 

agents (𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥
1

𝑛
+

𝑛−1

𝑛
𝜃𝐶), then all agents cooperate in equilibrium as well. 

Third, if there are not sufficiently many non-punishers (𝑄0 < 1 −
1

𝑛
−

𝑛−1

𝑛
𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃}), then there 

exists a Nash equilibrium in which all agents cooperate and all agents (apart from non-punishers) 

punish defectors. Fourth, if there are not sufficient independent punishers to make cooperation the 

payoff maximizing choice (either by themselves, or in unison with conformist punishers), then there 

exists a Nash equilibrium in which all agents defect.  

Together, the third and the fourth statement imply that when both independent punishers and non-

punishers occur at relatively low frequencies, cooperation and defection can both emerge as Nash 

equilibria. The intuition for this result is that, when independent punishers are insufficient to enforce 

cooperation, but there are potentially enough of the (two types of) conditional punishers to do so, 

then the fact that agents this latter group conditions their behavior either on the existing levels of 
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cooperation or punishment can make both the defection equilibrium and the cooperation equilibrium 

possible. 

In the following section, we focus on situations where there are multiple equilibria, and examine how 

(conditional and unconditional) punishment strategies affect which of these equilibria is selected in 

the long run. In the simulations reported in the main text, we examine the short-run dynamics of our 

model. 

 

3.4. Long-run equilibrium 

In this section we examine the long-run effects of conditional and unconditional punishment strategies 

on cooperation. We aim to delineate the conditions under which conditional punishment strategies 

(norm enforcement and conformist punishment) will, in the long run, cause the population to be in or 

around the cooperation equilibrium for most of the time. Our analysis builds on Kandori et al., (1993) 

and Young (1993, 2001). 

We consider discrete time periods: 𝑡 = 0,1,2, … , 𝑇. In each period, agents are randomly matched and 

interact in the two-stage game described in Section 3.1 above. An agent’s punishment strategy and 

the population composition (𝑄𝐼𝑃, 𝑄𝑁𝐸 , 𝑄𝐶𝑃, 𝑄0) are fixed over time, but agents may update their 

cooperation and punishment decisions as their beliefs 𝑏𝑐 and 𝑏𝑝 change. In each period agents react 

to their beliefs ‘myopically’ to maximize their expected payoffs in that period. 

To be more precise, each period involves two subsequent classes of events:  

I. Updating beliefs. In each period 𝑡 ≥ 1, each agent updates their beliefs with probability u, 

with 0<u<1. Belief updating works as follows. The agent randomly samples m agents from the 

population, with 0<m≤n. She counts how many agents in the sample cooperated and would 

punish according to their strategies in the previous period, and divide the counts by m. The 

results become their beliefs 𝑏𝑐 and 𝑏𝑝 in the current period.  

II. Responding myopically to beliefs. An agent cooperates in a period if and only if they have belief 

𝑏𝑝 ≥ 𝜃𝐶. Punishment decisions are determined according to the agent’s type (as specified in 

Section 3.2 above).   

With a high probability, an agent’s decisions are implemented according to the rules stated above. 

With small probability 𝜀 ≥ 0, however, an agent makes a mistake (“tremble”). A mistake implies that 

the agent randomly selects a cooperative action or a punishment action. We assume that mistakes 
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are independent across periods, agents, and across cooperation and punishment decisions. Following 

Kandori et al., (1993) and Young, (1993, 2001), we refer to the dynamic with 𝜀 > 0 as the stochastic 

dynamic, and the dynamic with 𝜀 = 0 as the best-response dynamic. 

We first analyze the stochastic dynamic in the case of 𝑚 = 𝑛, 𝑇 → ∞, and 𝜀 → 0 using analytical 

methods. As previous studies of the same class of stochastic dynamics show (Kandori et al., 1993; 

Young, 1993, 2001), whether 𝑚 < 𝑛  or 𝑚 = 𝑛  does not affect the stationary distributions of the 

dynamics. We also conduct simulations to explore the cases of small sample size 𝑚, finite 𝑇, and non-

negligible 𝜀 (see main text and Figures A7-A10).  

Our analytical results aim to characterize the set of long-run equilibria. These are the equilibria that 

have a positive frequency in the stationary distribution of the stochastic dynamic when the probability 

of mistakes is vanishingly small. A long run equilibrium is formally defined as follows. Let 𝑠  be a 

population state specifying the cooperation decision and punishment decision of each agent in the 

population. Let 𝑆  denote the set of all population states. Let 𝑃𝜀 ∈ 𝛥(𝑆)  denote the stationary 

distribution of the stochastic dynamic under 𝜀 > 0  and 𝑚 = 𝑛 . The stochastic dynamic is an 

irreducible Markov chain on the finite state space 𝑆. Hence 𝑃𝜀 exists and is unique for each 𝜀. We 

obtain 𝑃𝜀  by taking 𝑇 → ∞. Let 𝑃 ≡ lim
𝑒→0

 𝑃𝜀  denote the limit distribution as 𝜀 approaches zero. A state 

𝑠 is a long-run equilibrium if 𝑃(𝑠) > 0 (Kandori et al., 1993; Young, 1993, 2001). If a state is a unique 

long-run equilibrium for sufficiently large 𝑛, then it is a generically unique long-run equilibrium. 

For the sake of exposition and analytical tractability, we restrict our attention to the parameter ranges 

specified by the assumptions below.   

Assumptions.   

1) 𝑄𝐼𝑃 < 𝑚𝑖𝑛{𝜃𝐶 , 𝜃𝐶𝑃}, 𝜃𝑁𝐸 < 1, and 𝑄0 < 1 − 𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃}; 

2) either (i) 𝑄𝑁𝐸 ≥ |𝜃𝐶 − 𝜃𝐶𝑃| and 𝑄𝐶𝑃 ≥ |𝜃𝐶 − 𝜃𝐶𝑃|, or (ii) 𝑄𝑁𝐸 ≤ |𝜃𝐶 − 𝜃𝐶𝑃| and 𝑄𝐶𝑃 ≤ |𝜃𝐶 −

𝜃𝐶𝑃|; 

3) either (i) 𝜃𝐶𝑃 ≤ 𝑄𝐼𝑃 + 𝑄𝑁𝐸  and 𝜃𝐶𝑃 ≤ 𝑄𝐼𝑃 + 𝑄𝐶𝑃 , or (ii) 𝜃𝐶𝑃 ≥ 𝑄𝐼𝑃 + 𝑄𝑁𝐸  and 𝜃𝐶𝑃 ≥ 𝑄𝐼𝑃 +

𝑄𝐶𝑃. 

Assumption (1) restricts our attention to cases where the following Nash equilibria both exist (see 

Proposition 1): the defection equilibrium in which all agents defects and only independent punishers 

punish defectors; and the cooperation equilibrium in which all agents cooperate and all agents (except 

non-punishers) punish defectors. The remaining two assumptions greatly reduce the number of cases 

we need to consider, but still allow us to obtain the key intuitions from the model. Specifically, 

Assumption (2) holds that the proportions of conditional punishers (𝑄𝑁𝐸  and 𝑄𝐶𝑃) are both either high 
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or low. Assumption (3) holds that the value of 𝜃𝐶𝑃 is either high or low, compared to the number of 

punishers.  

Now we can state the proposition about the long-run equilibrium of the stochastic dynamic. It shows 

how norm enforcement and conformist punishment interact with independent punishment to affect 

cooperation in the long run.  

Proposition 2. (Long-run equilibrium) Suppose 𝑚 = 𝑛 and Assumption 1 hold. Let 𝜃 ≡

𝑚𝑖𝑛{
1

2
(𝜃𝐶+𝜃𝐶𝑃), 2𝜃𝑁𝐸+𝜃𝐶𝑃 − 1} and  𝜃̄ ≡ 𝑚𝑎𝑥{

1

2
(𝜃𝐶+𝜃𝐶𝑃), 2𝜃𝑁𝐸+𝜃𝐶𝑃 − 1}.  

1. If 𝑄𝐼𝑃 + 𝑄𝑁𝐸 > 𝜃̄ and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 > 𝜃̄, then the cooperation equilibrium is the generically 

unique long-run equilibrium. 

2. If 𝑄𝐼𝑃 + 𝑄𝑁𝐸 < 𝜃 𝑎𝑛𝑑 𝑄𝐼𝑃 + 𝑄𝐶𝑃 < 𝜃, then the defection equilibrium is the generically 

unique long-run equilibrium. 

The parameters 𝜃 and 𝜃̄ are two critical thresholds derived from 𝜃𝐶, 𝜃𝐶𝑃 and 𝜃𝑁𝐸. Fig. A11 illustrates 

the proposition: together with the independent punishment, conditional punishment (𝑄𝐼𝑃 + 𝑄𝑁𝐸 >

𝜃̄ and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 > 𝜃̄) can support cooperation as the generically unique long-run equilibrium. If the 

frequencies of independent punishment and conditional punishment are both low (𝑄𝐼𝑃 + 𝑄𝑁𝐸 <

𝜃 and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 < 𝜃), then the cooperation equilibrium cannot be sustained in the long run.  

 

 

Fig. A11. Illustration of Proposition 2. When 𝑄𝐼𝑃 + 𝑄𝑁𝐸 > 𝜃̄  and 𝑄𝐼𝑃 + 𝑄𝐶𝑃 > 𝜃̄ , we expect to see the 

cooperation equilibrium in the long run. When 𝑄𝐼𝑃 + 𝑄𝑁𝐸 < 𝜃 and  𝑄𝐼𝑃 + 𝑄𝐶𝑃 < 𝜃 , we expect to see the 

defection equilibrium in the long run. When 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5, we have 𝜃 = 𝜃̄ = 0.5.  

𝑄𝐼𝑃 
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The proof of Proposition 2 is provided in Section 3.5.2 below. Here we sketch the intuition. When the 

probability of mistake 𝜀 is small, the dynamic stays mostly in the absorbing states (i.e., the strategy 

profiles that the dynamic will not escape from without mistakes when they are reached). Occasionally, 

the dynamic jumps from one absorbing state to another state when a certain sequence of mistakes 

occur. As 𝜀 approaches zero, leaving an absorbing state is extremely difficult because even a single 

mistake would be a rare event. Hence, the long-run equilibrium must be one of the absorbing states. 

To identify the long-run equilibrium, we count the minimum numbers of mistakes required to transit 

from one absorbing state to another. The long-run equilibrium, roughly speaking, is the absorbing 

state that is most difficult to leave and that is relatively easy to transit to from other absorbing states 

(as measured by the minimum numbers of mistakes required for the transitions). 

Our model has two absorbing states: the cooperation equilibrium and the defection equilibrium. To 

determine which one is the long-run equilibrium, we examine the transition paths that exist between 

them and identify the transition path which requires the smallest number of mistakes. Fig. A12 shows 

the relevant transition paths from the defection equilibrium to the cooperation equilibrium. For a 

transition from the defection equilibrium to the cooperation equilibrium to occur, we require either 

enough agents to punish defectors by mistakes (Paths E1 and E2; ‘E’ for Emergence of cooperation) or 

enough agents to cooperate by mistakes (Path E3). These mistakes then trigger a chain of reactions 

leading to the cooperation equilibrium. How many mistakes are enough depends on the thresholds 

𝜃𝐶  (for agents to cooperate), 𝜃𝐶𝑃  (for conformist punishers to punish), 𝜃𝑁𝐸  (for norm enforcers to 

punish) and the numbers of punishers 𝑄𝐼𝑃, 𝑄𝐶𝑃 and 𝑄𝑁𝐸 . 

The minimum number of mistakes required to transit from the defection equilibrium to the 

cooperation equilibrium is compared with that of transitions in the opposite direction. Fig. A13 shows 

transition paths from the cooperation equilibrium to the defection equilibrium. Starting the 

cooperation equilibrium, we require either enough agents to stop punishing defectors by mistakes 

(Paths B1 and B2; ‘B’ for Breakdowns of cooperation) or enough agents to defect by mistakes (Path 

B3). The minimum number of mistakes required to lead to the defection equilibrium depends on the 

thresholds 1 − 𝜃𝐶  (for agents to defect), 1 − 𝜃𝐶𝑃  (for conformist punishers to stop punishing), 1 −

𝜃𝑁𝐸 (for norm enforcers to stop punishing) and the number of non-punishers 𝑄0. 
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Fig A12. Transition paths from defection equilibrium to cooperation equilibrium 
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Fig A13. Transition paths from cooperation equilibrium to defection equilibrium
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Note that Proposition 2 is silent about the case of 𝜃 < 𝑄𝐼𝑃 + 𝑄𝑁𝐸 < 𝜃̄  or 𝜃 < 𝑄𝐼𝑃 + 𝑄𝐶𝑃 < 𝜃̄ . 

Proposition 3 below provides a precise cut-off condition for the long-run equilibrium in the special 

case of  𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 =
1

2
, which is also the set of parameters we use in our simulations presented 

in the main text.  The assumption that all thresholds are equal to a half is somewhat arbitrary. As 

stated in Section 2 of this Supplement, the threshold 𝜃𝐶  is determined by exogenous payoff 

parameters. Hence, setting it equal to a half comes down to considering a subset of the potential 

payoff space. For 𝜃𝑁𝐸  and 𝜃𝐶𝑃,  however, a threshold of a half makes intuitive sense. For norm 

enforcement, it is in line with the idea that people will judge the more common behavior as the more 

moral one, and act to enforce it (Lindström et al., 2018). For conformist punishment, it states that 

these agents follow the behavior of the majority. Furthermore, our focus here is not on the 

comparative statics with respect to these thresholds, but rather on how the population composition 

(with respect to punishment strategies) affects cooperation dynamics. In this regard, the proposition 

below is illuminating. 

Proposition 3. Suppose 𝑚 = 𝑛 and 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 =
1

2
.  Then  

1. If 𝑄𝐼𝑃 +
1

2
(𝑄𝑁𝐸 + 𝑄𝐶𝑃) >

1

2
, then the cooperation equilibrium is the generically unique long-

run equilibrium;  

2. If 𝑄𝐼𝑃 +
1

2
(𝑄𝑁𝐸 + 𝑄𝐶𝑃) <

1

2
, then the defection equilibrium is the generically unique long-run 

equilibrium. 

The proof for Proposition 3 is provided at the end of this section. When 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 =
1

2
, we have 

𝜃 = 𝜃̄ =
1

2
 in the conditions specified in Proposition 2. Proposition 3 further reveals that: if and only if 

independent punishers and the average number of norm enforcers and conformist punishers together 

add up to over a half of the population, then the cooperation equilibrium will be the only state that 

occurs with positive probability 𝑃(𝑠) > 0 in the long run. That is, the average frequency of norm 

enforcement and conformist punishment is important to support cooperation in the long run; it is as 

important as the role played by independent punishment.  

Remarks. Economists have used myopic best-response stochastic dynamics to study bargaining norms 

(Young, 1998), customs in economic contracts (Young & Burke, 2001), evolution of altruism (Eshel et 

al., 1998), the selection of coordination actions in social networks (Goyal & Vega-Redondo, 2005; 

Jackson & Watts, 2002), diffusion of innovations (Young, 2009, 2011), and the evolution of cooperation 

strategies in repeated games (Young & Foster, 1991). In particular, studies (Kandori et al., 1993; Young, 

1993, 2001) show that many details of these dynamics do not affect their stationary distributions when 
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𝜀 → 0. In particular, the stationary distribution is not affected by the value of the updating probability 

𝑢 as long as 0 < 𝑢 < 1, or the sample size 𝑚 as long as 𝑚 does not become too small to affect the 

tipping thresholds, or the probability distribution used to pick actions when making mistakes. 

Assuming 𝑢 < 1 means that it will not occur that all agents update simultaneously in a period. If 𝑢 =

1  and 𝜀  is small, then besides the cooperation equilibrium and the defection equilibrium, the 

population can also be trapped in a loop of jumping back and forth between two states: in one, all 

agents defect and all punish defectors except for the non-punishers; in the other, all agents cooperate 

but no one would punish defectors except for the independent punishers. We exclude this possibility 

to focus on the transitions between the cooperation equilibrium and the defection equilibrium 

characterized by Proposition 1.  

 

3.5. Proofs 

3.5.1. Proof of Proposition 1 

(1) By contradiction: Suppose there is a (Nash) equilibrium in which some agent cooperates. Then for 

this agent, 𝑏𝑝 ≥ 𝜃𝐶 where 𝑏𝑝 is the proportion of those who punish among the other agents. Note 

𝑏𝑝 ≤
(1−𝑄0)𝑛

𝑛−1
, where (1 − 𝑄0)𝑛 is an upper bound on the number of agents who punish, and 𝑛 −

1 is the number of all other agents. Given 𝑄0 > 1 −
𝑛−1

𝑛
𝜃𝐶 , however, we have 

(1−𝑄0)𝑛

𝑛−1
< 𝜃𝐶 , 

contradicting with 𝑏𝑝 ≥ 𝜃𝐶. 

(2) We show the contrapositive: Suppose there is an equilibrium in which an agent defects. Then for 

the agent, 𝑏𝑝 < 𝜃𝐶, where 𝑏𝑝 is at least 
𝑄𝐼𝑃𝑛−1

𝑛−1
. Hence 

𝑄𝐼𝑃𝑛−1

𝑛−1
< 𝜃𝐶, implying 𝑄𝐼𝑃 <

1

𝑛
+

𝑛−1

𝑛
𝜃𝐶.  

Next, suppose 𝑄𝐼𝑃 > 𝜃𝐶𝑃. Then both independent punishers and conformist punishers punish. 

Hence, for each agent, the proportion of those who punish among the others is at least 

(𝑄𝐼𝑃+𝑄𝐶𝑃)𝑛−1

𝑛−1
.  By 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥

1

𝑛
+

𝑛−1

𝑛
𝜃𝐶 , we have 

(𝑄𝐼𝑃+𝑄𝐶𝑃)𝑛−1

𝑛−1
≥ 𝜃𝐶 . Thus, every agent 

cooperates. 

(3) Consider the strategy profile such that all agents cooperate, and all agents (except non-punishers) 

punish defectors. To show that this is an equilibrium, we check the best-response of each agent. 

First, consider each agent’s cooperation decision. The specified condition implies 𝑏𝑝 ≥

(𝑄𝐼𝑃+𝑄𝑁𝐸+𝑄𝐶𝑃)𝑛−1

𝑛−1
≥ 𝜃𝐶  (a). Hence it is each agent’s best response to cooperate. Second, given 

that everyone cooperates, it is each norm enforcer’s best response to punish any defector. And 
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by definition, each independent punisher also punishes. Third, it is each conformist punisher’s 

best response to punish if 
(𝑄𝐼𝑃+𝑄𝑁𝐸+𝑄𝐶𝑃)𝑛−1

𝑛−1
≥ 𝜃𝐶𝑃  (b). The condition 𝑄0 < 1 −

1

𝑛
−

𝑛−1

𝑛
𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃} implies both (a) and (b). This establishes the statement.  

Consider the strategy profile such that all agents defect, and no agent (except independent 

punishers) punishes defectors. We prove the statement by checking each agent’s best responses. 

First, 𝜃𝐼𝑃 <
𝑛−1

𝑛
𝜃𝐶  implies 

𝜃𝐼𝑃𝑛

𝑛−1
< 𝜃𝐶. Hence it is each agent’s best response to defect. Second, 

that all agents defect implies that it is each norm enforcer’s best response to not punish defectors. 

Third, 𝜃𝐼𝑃 <
𝑛−1

𝑛
𝜃𝐶𝑃 implies 

𝜃𝐼𝑃𝑛

𝑛−1
< 𝜃𝐶𝑃. Hence it is each conformist punisher’s best response to 

not punish. This completes the proof of Proposition 1.   

 

3.5.2. Proof of Proposition 2 

Preliminaries. First, we introduce necessary terminology for our proof (see, e.g., (Young, 2001) for a 

more extensive discussion). An absorbing set (of the best-response dynamic) is a subset of states 𝑋 ⊂

𝑆  such that (i) if the best-response dynamic starts from a state in 𝑋  then it stays within 𝑋  with 

probability 1, and (ii) for any 𝑠, 𝑠′ ∈ 𝑋, there is a positive probability of transiting from 𝑠 to 𝑠′ within a 

finite number of periods. If an absorbing set contains only one state, then we call the state an 

absorbing state. A transition path from 𝑠 to 𝑠′ is a finite sequence of states, 𝑠1, 𝑠2, … , 𝑠𝐾 ∈ 𝑆, with 

𝑠1 = 𝑠 , 𝑠𝐾 = 𝑠′ , and 𝑠𝑘 ≠ 𝑠𝑘+1  for each 1 ≤ 𝑘 < 𝐾 . The cost of a transition path, denoted by 

𝑐𝑜𝑠𝑡(𝑠1, 𝑠2, … , 𝑠𝐾), is the number of mistakes (choices that are not best responses) that occur along 

the path. For any real number 𝑥, ⌈𝑥⌉ is the lowest integer equal to or greater than 𝑥, and we let 𝑥+ ≡

𝑚𝑎𝑥{0, 𝑥}. 

We use stochastic trees to represent minimum transition costs between absorbing sets. A stochastic 

tree is a directed tree with each absorbing set as a vertex. The directed edges in a stochastic tree 

represent transitions among absorbing sets. Each edge is weighted by the minimum number of 

mistakes required to transit from one absorbing set to another. An absorbing set is said to be at the 

root of a stochastic tree if there is no edge (with positive weight) leading from it to other absorbing 

sets in the tree. The cost of a stochastic tree is the sum of the weights of all its edges. Our proof applies 

the following theorem: 

Young’s Theorem (Young, 1993).   

1. A state is a long-run equilibrium only if it is contained in an absorbing set. 
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2. If an absorbing state is at the root of the stochastic tree that strictly minimizes the cost among 

all stochastic trees, then the state is the unique long-run equilibrium.  

The best-response dynamic in our model has only two absorbing sets: one consisting of defection 

equilibrium, and the other consisting of the cooperation equilibrium. With abuse of notation, we 

denote them by 𝐷 and 𝐶, respectively. By Young’s theorem, 𝐷 and 𝐶 are the only candidates for a 

long-run equilibrium.  

We can construct two stochastic trees: 𝐷 → 𝐶  (a directed line with 𝐷  and 𝐶  as its two vertices 

connected by a unique edge leading from 𝐷 to 𝐶) and 𝐶 → 𝐷. Let 𝑀𝐶→𝐷 denote the minimum number 

of mistakes required to transit from 𝐶  to 𝐷 . More precisely, 𝑀𝐶→𝐷  is the minimum value of 

𝑐𝑜𝑠𝑡(𝑠1, 𝑠2, … , 𝑠𝐾) among the set of all paths 𝑠1, 𝑠2, … , 𝑠𝐾 with 𝑠1 = 𝐶 and 𝑠𝐾 = 𝐷. Likewise, 𝑀𝐶→𝐷 is 

the minimum value of 𝑐𝑜𝑠𝑡(𝑠1, 𝑠2, … , 𝑠𝐾) among the set of all paths 𝑠1, 𝑠2, … , 𝑠𝐾  with 𝑠1 = 𝐷  and 

𝑠𝐾 = 𝐶 . By Young’s theorem, it suffices to compare 𝑀𝐶→𝐷   with 𝑀𝐶→𝐷  to determine the long-run 

equilibrium.  

Transition paths. Now we examine transition paths with minimum costs between 𝐷 and 𝐶. Three 

paths are relevant to determine the minimum cost of transitions from 𝐷 to 𝐶 (Fig. A12): 

● Path E1: Starting from 𝐷 at time 𝑡 = 0, if 𝜃𝐶 − 𝑄𝐼𝑃 < 𝑄0, then let ⌈(𝜃𝐶 − 𝑄𝐼𝑃)𝑛⌉ non-punishers 

punish defectors by mistake at 𝑡 = 1. If 𝜃𝐶 − 𝑄𝐼𝑃 ≥ 𝑄0, then let all non-punishers and ⌈(𝜃𝐶 −

𝑄𝐼𝑃 − 𝑄0)𝑛⌉ conformist punishers punish by mistake at 𝑡 = 1. At 𝑡 = 2, let all agents update 

their cooperation decision. Then they all cooperate (for brevity, if we do not explicitly mention 

that agents update their cooperation or punishment decision, then the agents are not selected 

to update from the last period and do not make any additional mistakes). At 𝑡 = 3, let all norm 

enforcement agents update their punishment decision: they will all punish. It follows that 

following 𝑡 = 3, all agents cooperate, and ⌈(𝜃𝐶 + 𝑄𝑁𝐸)𝑛⌉ agents punish defectors. At 𝑡 = 4, let 

𝛥1
𝐸 ≡ ⌈(𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝑁𝐸)+𝑛⌉  agents who do not punish at 𝑡 = 3  start to punish by mistake. 

Finally, at 𝑡 = 5, let all conformist punishers update their punishment decision. Then by requiring 

all agents to update both cooperation and punishment decisions at 𝑡 = 6, we reach 𝐶. Collecting 

the mistakes, we obtain the cost of path E1: 𝑐𝑜𝑠𝑡(𝐸1) = ⌈(𝜃𝐶 − 𝑄𝐼𝑃)𝑛⌉ + 𝛥1
𝐸 , where 𝛥1

𝐸 = 0 if 

𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|. 

● Path E2: Starting from 𝐷 at 𝑡 = 0, if 𝜃𝐶𝑃 − 𝑄𝐼𝑃 < 𝑄0 + 𝑄𝑁𝐸, let ⌈(𝜃𝐶𝑃 − 𝑄𝐼𝑃)𝑛⌉ non-punishers or 

norm enforcers punish by mistake at 𝑡 = 1. If 𝜃𝐶𝑃 − 𝑄𝐼𝑃 ≥ 𝑄0 + 𝑄𝑁𝐸 , then let all non-punishers, 

all norm enforcers, and  ⌈(𝜃𝐶𝑃 − 𝑄𝑁𝐸 − 𝑄0)𝑛⌉ conformist punishers punish by mistake at 𝑡 = 1, 

resulting in ⌈𝜃𝐶𝑃𝑛⌉ agents punishing. At 𝑡 = 2 , let all conformist punishers update their 
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punishment decision. Then all conformist punishers punish. At 𝑡 = 3 , let 𝛥2
𝐸 ≡ ⌈(𝜃𝐶 − 𝜃𝐶𝑃 −

𝑄𝐶𝑃)+𝑛⌉ agents who do not punish at 𝑡 = 2 start to punish by mistake. At 𝑡 = 4, let all agents 

update their cooperation decision. Then all agents cooperate. At 𝑡 = 5, let all norm enforcers 

update their punishment decision and start to punish. By requiring all agents to update both 

cooperation and punishment decisions at 𝑡 = 6, we reach 𝐶. The cost of path E2 is 𝑐𝑜𝑠𝑡(𝐸2) =

⌈(𝜃𝐶𝑃 − 𝑄𝐼𝑃)𝑛⌉ + 𝛥2
𝐸, with 𝛥1

𝐸 = 0 if 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|.  

● Path E3: Starting from 𝐷 at 𝑡 = 0, let ⌈𝜃𝑁𝐸𝑛⌉ agents cooperate by mistakes at 𝑡 = 1. At 𝑡 = 2, let 

all norm enforcers update their punishment decision. Then all norm enforcers will punish 

defectors. At 𝑡 = 3 , let 𝛥3
𝐸 ≡ ⌈(𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸)+𝑛⌉  agents who did not punish in the last 

period start to punish by mistakes. At 𝑡 = 4, let all conformist punishers update their punishment 

decision. Then all conformist punishers will punish. At 𝑡 = 5 , let all agents update their 

cooperation decision. Then by requiring all agents to update both cooperation and punishment 

decisions in 𝑡 = 6, we reach 𝐶. The cost of this is path is 𝑐𝑜𝑠𝑡(𝐸3) = ⌈𝜃𝑁𝐸𝑛⌉ + 𝛥3
𝐸, where 𝛥3

𝐸 =

0 if 𝑄𝐼𝑃 + 𝑄𝑁𝐸 ≥ 𝜃𝐶𝑃. 

Correspondingly, the following three paths are relevant to compute the minimum cost of transiting 

from 𝐶 to 𝐷 (Fig. A13): 

● Path B1: Starting from 𝐶 at 𝑡 = 0, if ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ ≤ 𝑄𝐼𝑃, let ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ independent 

punishers stop punishing by mistake at 𝑡 = 1. If ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ > 𝑄𝐼𝑃 , let all independent 

punishers and ⌈(1 − 𝜃𝐶 − 𝑄0 − 𝑄𝐼𝑃)𝑛⌉ conformist punishers stop punishing by mistakes at 𝑡 =

1. At 𝑡 = 2, let all agents update their cooperation decision. Then all agents now defect.  At 𝑡 =

3, let all norm enforcement punishers update punishment decisions and stop punishing. At 𝑡 =

4, let all 𝛥1
𝐵 ≡ ⌈(𝜃𝐶 − 𝜃𝐶𝑃 − 𝑄𝑁𝐸)+𝑛⌉ agents who punish in 𝑡 = 3 stop punishing by mistake. At 

𝑡 = 5, let all conformist punishers update punishment decisions and stop punishing. Then by 

requiring all agents to update cooperation decisions as well as punishment decisions at 𝑡 = 6, we 

reach 𝐷 .  The cost of this path is 𝑐𝑜𝑠𝑡(𝐵1) = ⌈(1 − 𝜃𝐶 − 𝑄0)𝑛⌉ + 𝛥1
𝐵 , where 𝛥1

𝐵 = 0  when 

𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|. 

● Path B2: Starting from 𝐶  at 𝑡 = 0 , let ⌈(1 − 𝜃𝐶𝑃 − 𝑄0)𝑛⌉  agents who punish at 𝑡 = 0  stop 

punishing by mistake at 𝑡 = 1. At 𝑡 = 2, let all conformist punishers update punishment decision. 

They all stop punishing. At 𝑡 = 3, let 𝛥2
𝐵 ≡ ⌈(𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝐶𝑃)+𝑛⌉ agents who punish at 𝑡 = 2 

stop punishing by mistake. At 𝑡 = 4, let all agents update cooperation decisions and start to 

defect. At 𝑡 = 5, let all norm enforcers update punishment decisions and stop punishing. Then 
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we reach 𝐷  by requiring all agents update both decisions at 𝑡 = 6 . The cost of this path is 

𝑐𝑜𝑠𝑡(𝐵2) = ⌈(1 − 𝜃𝐶𝑃 − 𝑄0)𝑛⌉ + 𝛥2
𝐵, where 𝛥2

𝐵 = 0 when 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|.  

● Path B3: Starting from 𝐶 at 𝑡 = 0, let⌈(1 − 𝜃𝑁𝐸)𝑛⌉ agents defect by mistake at 𝑡 = 1. At𝑡 = 2, 

let all norm enforcers update punishment decisions and stop punishing. At 𝑡 = 3, let 𝛥3
𝐵 ≡ ⌈(1 −

𝜃𝐶𝑃 − 𝑄0 − 𝑄𝑁𝐸)+𝑛⌉ agents who punish at 𝑡 = 2 stop punishing by mistake. Note 𝛥3
𝐵 can also 

expressed by 𝛥3
𝐵 = ⌈(𝑄𝐼𝑃 + 𝑄𝐶𝑃 − 𝜃𝐶𝑃)+𝑛⌉. By requiring all agents to update both decisions at 

𝑡 = 3, we reach 𝐷. The cost of this path is 𝑐𝑜𝑠𝑡(𝐵3) = ⌈(1 − 𝜃𝑁𝐸)𝑛⌉ + 𝛥3
𝐵, where 𝛥3

𝐸 = 0 if 𝑄0 +

𝑄𝑁𝐸 ≥ 1 − 𝜃𝐶𝑃.  

Simplifying observations. We need to determine the path with minimum cost among the six paths 

above. This requires solving a set of linear inequalities. Two observations simplify our calculations. 

First, since we are only concerned with generically unique long-run equilibria, it is both sufficient and 

necessary for the minimum cost path to have strictly lower cost than all transition paths of the 

opposite direction for infinitely many 𝑛. A sufficient and necessary condition for this is that there is a 

finite 𝑛 under which all relevant inequalities for pairwise cost comparisons hold strictly. This condition 

is equivalent to having all relevant inequalities holding strictly when we ignore all “⌈. ⌉” brackets, i.e., 

by ignoring the “least integer greater than” operator. To see the equivalence, first, suppose ⌈𝑥𝑛⌉ <

⌈𝑦𝑛⌉ for some positive 𝑛. Then obviously 𝑥𝑛 < 𝑦𝑛. Conversely, suppose 𝑥𝑛 < 𝑦𝑛 for some positive 𝑛. 

Then 𝑥 < 𝑦, and there is some large enough integer 𝑟 such that (𝑦 −  𝑥)𝑟 > 1, implying 𝑥𝑟 + 1 < 𝑦𝑟. 

Thus ⌈𝑥𝑟⌉ < ⌈𝑦𝑟⌉, and ⌈𝑥𝑛⌉ < ⌈𝑦𝑛⌉ for all 𝑛 > 𝑟. 

Second, after removing all “⌈. ⌉” brackets, the costs of the paths listed above are all multiplications of 

𝑛 . Taking the two observations together, it suffices to consider their relative costs 𝑐𝑜𝑠𝑡̂(. ) ≡

𝑐𝑜𝑠𝑡(. )/𝑛 and ignore all “⌈. ⌉”  operators. Henceforth we will focus on 𝑐𝑜𝑠𝑡̂(. ) and remove all “⌈. ⌉”  

operators. The six transition paths and their relative costs 𝑐𝑜𝑠𝑡̂ are summarized in Table A5 below.  

Table A5. Transition paths and relative costs. 

 Relative costs 𝑐𝑜𝑠𝑡̂ 

Transition paths from 𝐷 to 𝐶  

E1 𝜃𝐶 − 𝑄𝐼𝑃 + 𝛥1
𝐸, where 𝛥1

𝐸
= (𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝑁𝐸)+ 

E2 𝜃𝐶𝑃 − 𝑄𝐼𝑃 + 𝛥2
𝐸, where 𝛥2

𝐸
= (𝜃𝐶 − 𝜃𝐶𝑃 − 𝑄𝐶𝑃)+ 

E3 𝜃𝑁𝐸 + 𝛥3
𝐸, where 𝛥3

𝐸
= (𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸)+ 

Transition paths from 𝐶 to 𝐷  

B1 1 − 𝜃𝐶 − 𝑄0 + 𝛥1
𝐵, where 𝛥1

𝐵
= (𝜃𝐶 − 𝜃𝐶𝑃 − 𝑄𝑁𝐸)+ 
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B2 1 − 𝜃𝐶𝑃 − 𝑄0 + 𝛥2
𝐵, where 𝛥2

𝐵
= (𝜃𝐶𝑃 − 𝜃𝐶 − 𝑄𝐶𝑃)+ 

B3 1 − 𝜃𝑁𝐸 + 𝛥3
𝐵, where 𝛥3

𝐵
= (𝑄𝐼𝑃 + 𝑄𝐶𝑃 − 𝜃𝐶𝑃)+ 

 

Final steps. Three final steps pin down the minimum cost path:  

Step 1: If 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} > 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1  then  𝑐𝑜𝑠𝑡̂(𝐸3) < 𝑐𝑜𝑠𝑡̂(𝐵3) ; if 𝑄𝐼𝑃 +

𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} < 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1 then  𝑐𝑜𝑠𝑡̂(𝐸3) > 𝑐𝑜𝑠𝑡̂(𝐵3).  

 First, suppose 𝜃𝐶𝑃 ≤ 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} . Then 𝛥3
𝐸 = 0 , and 𝛥3

𝐵 ≥ 0.  Thus, 𝑐𝑜𝑠𝑡̂(𝐸3) =

𝜃𝑁𝐸, and 𝑐𝑜𝑠𝑡̂(𝐵3) = 1 − 𝜃𝑁𝐸 + 𝑄𝐼𝑃 + 𝑄𝐶𝑃 − 𝜃𝐶𝑃. It follows that  

  𝑐𝑜𝑠𝑡̂(𝐸3) ≤ 𝑐𝑜𝑠𝑡̂(𝐵3) ⇔ 𝑄𝐼𝑃 + 𝑄𝐶𝑃 ≥ 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1. 

Second, suppose 𝜃𝐶𝑃 ≥ 𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃}. Then 𝛥3
𝐸 ≥ 0 and 𝛥3

𝐵 =0. Thus, 𝑐𝑜𝑠𝑡̂(𝐸3) =

𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸, and 𝑐𝑜𝑠𝑡̂(𝐵3) = 1 − 𝜃𝑁𝐸 .Then 

  𝑐𝑜𝑠𝑡̂(𝐸3) ≤ 𝑐𝑜𝑠𝑡̂(𝐵3) ⇔ 𝑄𝐼𝑃 + 𝑄𝑁𝐸 ≥ 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1. 

 Taking together, we have the claimed properties.  

In the remaining two steps, we write 𝑟𝐸 ≡ 𝑚𝑖𝑛{𝑐𝑜𝑠𝑡̂(𝐸1), 𝑐𝑜𝑠𝑡̂(𝐸2)}  and 𝑟𝐵 ≡

𝑚𝑖𝑛{𝑐𝑜𝑠𝑡̂(𝐵1), 𝑐𝑜𝑠𝑡̂(𝐵2)}.  

Step 2: In the case of 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} ≥ |𝜃𝐶 − 𝜃𝐶𝑃|, we have 𝑟𝐸 ≤ 𝑟𝐵  if and only if 2𝑄𝐼𝑃 + 𝑄𝑁𝐸 +

𝑄𝐶𝑃 ≥ 𝜃𝐶 + 𝜃𝐶𝑃.   

In this case,  𝛥1
𝐸 =  𝛥2

𝐸 = 𝛥1
𝐵 =  𝛥2

𝐵 = 0 . Hence, 𝑟𝐸 = 𝑚𝑖𝑛{𝜃𝐶 , 𝜃𝐶𝑃} − 𝑄𝐼𝑃 , and 𝑟𝐵 = 1 −

𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃} − 𝑄0. It follows that  𝑟𝐸 ≤ 𝑟𝐵 ⇔ 2𝑄𝐼𝑃 + 𝑄𝑁𝐸 + 𝑄𝐶𝑃 ≥ 𝜃𝐶 + 𝜃𝐶𝑃. 

Step 3: In the case of 𝑚𝑎𝑥{𝜃𝐶 , 𝜃𝐶𝑃} ≤ |𝜃𝐶 − 𝜃𝐶𝑃|, if 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} >
1

2
(𝜃𝐶+𝜃𝐶𝑃), then 𝑟𝐸 <

𝑟𝐵; if  𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} <
1

2
(𝜃𝐶 + 𝜃𝐶𝑃), then 𝑟𝐸 > 𝑟𝐵.    

In this case, first, suppose 𝜃𝐶𝑃 ≥ 𝜃𝐶. Then 𝛥1
𝐸 ≥ 0, 𝛥2

𝐸 = 0, 𝛥1
𝐵 = 0, and 𝛥2

𝐵 ≥ 0. Thus 𝑟𝐸 =

𝜃𝐶𝑃 − 𝑄𝐼𝑃 − 𝑄𝑁𝐸  and 𝑟𝐵 = 1 − 𝜃𝐶 − 𝑄0 − 𝑄𝐶𝑃. Hence,   

(8)  𝑟𝐸 ≤ 𝑟𝐵  ⇔  2𝑄𝐼𝑃 + 2𝑄𝑁𝐸 ≥ 𝜃𝐶+𝜃𝐶𝑃.  

 Second, suppose  𝜃𝐶𝑃 < 𝜃𝐶 . Then 𝛥1
𝐸 = 0, 𝛥2

𝐸 ≥ 0, 𝛥1
𝐵 ≥ 0, and 𝛥2

𝐵 = 0.  Hence 𝑟𝐸 = 𝜃𝐶 −

𝑄𝐼𝑃 − 𝑄𝐶𝑃 and 𝑟𝐵 = 1 − 𝜂2 − 𝑄0 − 𝑄𝑁𝐸. Therefore,  
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(9)  𝑟𝐸 ≤ 𝑟𝐵  ⇔  2𝑄𝐼𝑃 + 2𝑄𝐶𝑃 ≥ 𝜃𝐶 + 𝜃𝐶𝑃.  

 Collecting (8) and (9), we establish the claim.  

To complete the proof, take together Steps 1 to 3. Then we know that if 𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} >

2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1  and  𝑄𝐼𝑃 + 𝑚𝑖𝑛{𝑄𝑁𝐸 , 𝑄𝐶𝑃} >
1

2
(𝜃𝐶 + 𝜃𝐶𝑃) , then 𝑐𝑜𝑠𝑡̂(𝐸3) < 𝑐𝑜𝑠𝑡̂(𝐵3)  and 𝑟𝐸 <

𝑟𝐵 , so that by Young’s theorem, 𝐶 is the generically unique long-run equilibrium. Conversely, if 𝑄𝐼𝑃 +

𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} > 2𝜃𝑁𝐸 + 𝜃𝐶𝑃 − 1  and  𝑄𝐼𝑃 + 𝑚𝑎𝑥{𝑄𝑁𝐸 , 𝑄𝐶𝑃} <
1

2
(𝜃𝐶 + 𝜃𝐶𝑃) , then 𝑐𝑜𝑠𝑡̂(𝐵3) <

𝑐𝑜𝑠𝑡̂(𝐸3) and 𝑟𝐵 < 𝑟𝐸, so that 𝐷 is the generically unique long-run equilibrium.  

 This completes the proof of Proposition 2.  

 

3.5.3. Proof of Proposition 3 

From Table A5, we know the relative costs of transitions between 𝐶 and 𝐷. Let 𝜃𝐶 = 𝜃𝑁𝐸 = 𝜃𝐶𝑃 = 0.5. 

Then  𝛥1
𝐸 =  𝛥2

𝐸 = 𝛥1
𝐵 =  𝛥2

𝐵 = 0, and 

𝑟𝐸 ≡ 𝑚𝑖𝑛{𝑐𝑜𝑠𝑡̂(𝐸1), 𝑐𝑜𝑠𝑡̂(𝐸2)} =
1

2
− 𝑄𝐼𝑃 

𝑟𝐵 ≡ 𝑚𝑖𝑛{𝑐𝑜𝑠𝑡̂(𝐵1), 𝑐𝑜𝑠𝑡̂(𝐵2)} =
1

2
− 𝑄0. 

Therefore, 𝑟𝐸 ≤ 𝑟𝐵 if and only if 𝑄𝐼𝑃 ≥ 𝑄0, which is equivalent to 2𝑄𝐼𝑃 + 𝑄𝑁𝐸 + 𝑄𝐶𝑃 ≥ 1.   

Observe that 𝑟𝐸 , 𝑟𝐵 ≤
1

2
, but 𝑐𝑜𝑠𝑡̂(𝐸3), 𝑐𝑜𝑠𝑡̂(𝐵3) ≥

1

2
. Hence, 𝐸3 and 𝐵3 are not the paths 

with strictly minimum costs.  Therefore, by Young’s theorem, 𝑄𝐼𝑃 > 𝑄0 , implying 𝑟𝐸 < 𝑟𝐵 , is both 

necessary and sufficient for 𝐶  to be the generically unique long-run equilibrium. And  𝑄𝐼𝑃 < 𝑄0 , 

implying 𝑟𝐸 > 𝑟𝐵 , is necessary and sufficient for 𝐷 to be the generically unique long-run equilibrium.  

This completes the proof of Proposition 3.   
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4. Experimental Materials 

Below we show on-screen instructions as displayed to participants. We start with the CC experiment 

in which participants could condition punishment of their interaction partner on descriptive norms of 

cooperation. Then we show the CP experiment, in which participants could condition punishment of 

their interaction partner on descriptive norms of punishment.  

 

Where necessary we add additional notes and explanations in grey boxes like this one. 

 

 

4.1. Instructions for the conditional cooperation (CC) experiment    
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Note that the control questions on the next screen included numerical examples of punishment 
that do not equalize the payoffs of both players (see below). As a result, participants had seen 
multiple different examples of possible outcomes of the two-stage game before making their 
decisions.  
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4.2. Stage 2 instructions for the conditional punishment (CP) experiment    

 

Stage 1 of the game was exactly the same as in the CC experiment. We omit it to avoid duplicating 
information. 
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