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Abstract

We examine high-stakes strategic choice using more than 40 years of data

from the American TV game show The Price Is Right. In every episode,

contestants play the Showcase Showdown, a sequential game of perfect in-

formation for which the optimal strategy can be found through backward

induction. We find that contestants systematically deviate from the subgame

perfect Nash equilibrium. These departures from optimality are well explained

by a modified agent quantal response model that allows for limited foresight.

The results suggest that many contestants simplify the decision problem by

adopting a myopic representation and optimize their chances of beating the

next contestant only. In line with learning, contestants’ choices improve over

the course of our sample period.

Keywords: backward induction; limited foresight; omission bias; quantal response equi-

librium; subgame perfect Nash equilibrium
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1 Introduction

Many economic interactions are sequential in nature. A negotiator who makes a

bargaining offer, an entrepreneur who considers whether to enter a market, and a

corporate manager who decides how many goods to produce, all need to consider

the subsequent actions of others. Such situations can be modeled as finite sequential

games of perfect information, for which the subgame perfect Nash equilibria can be

found through backward induction (von Stackelberg, 1934; Selten, 1978; Dixit, 1982;

Rubinstein, 1982).

Unfortunately, the descriptive accuracy of game-theoretic equilibria is difficult

to test in the field, because agents’ choice options, payoffs, and the information they

have are normally not (or not straightforwardly) observable. When choices deviate

from equilibrium play, it consequently remains unclear whether the behavior is truly

suboptimal or whether the deviations are the result of incorrect modeling assump-

tions. To avoid this joint-hypothesis problem, tests of equilibrium play typically rely

on laboratory experiments in which all factors are perfectly controlled. Experimen-

tal work generally finds that people often deviate from the equilibrium strategies,

casting doubt on the descriptive validity of backward induction as a solution concept

(Rosenthal, 1981; McKelvey and Palfrey, 1992; Fey et al., 1996; Binmore et al., 2002;

Johnson et al., 2002; Levitt et al., 2011; Dufwenberg and Van Essen, 2018). The

generalizability of experimental findings to real-world situations, however, is sub-

ject to debate (Binmore, 1999; Levitt and List, 2007a,b; Falk and Heckman, 2009;

Camerer, 2015). Critics argue that it is not very surprising that experimental sub-

jects frequently fail to adopt equilibrium strategies, most notably because of low

incentives and little experience with the task.

The present paper examines the optimality of strategic decisions in the quasi-

controlled high-stakes field setting of the Showcase Showdown (SCSD), a finite se-

quential game of perfect information that is played twice in every episode of the

long-running American TV game show The Price Is Right. In this game, described

in more detail in Section 2, three contestants take turns to spin a wheel that contains

all multiples of 5 in the range 5–100.1 Immediately after spinning the wheel once,

the contestant has to decide whether to spin the wheel again. Their score is the out-

come of the first spin if they spin only once, and the sum of the two spin outcomes

if they spin twice. The contestant whose score is closest to 100 without going over

wins the game and proceeds to the so-called Showcase final, where they compete

with the winner of another SCSD to win a set of prizes worth tens of thousands of

1Henceforth we refer to the contestant who spins first as Contestant 1, to the contestant who
spins second as Contestant 2, and to the contestant who spins last as Contestant 3.
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dollars in expectation. If their score is exactly 100 they win one or two cash bonus

prizes on top of their qualification for the final.

To make the optimal choice, the contestants thus need to weigh the possibility of

obtaining a more competitive score and having a shot at the bonus prizes against the

risk of self-elimination. Coe and Butterworth (1995), Grosjean (1998), and Tenorio

and Cason (2002) derive the unique subgame perfect Nash equilibrium (SPNE) for

this game for various combinations of bonus prizes and expected showcase values.

The three contestants’ equilibrium strategies, which can be found through backward

induction, take the form of decision rules that dictate whether a contestant should

stop or use their second spin.

The characteristics of the SCSD make it an appealing test bed for assessing

the descriptive validity of backward induction as a solution concept in the field.

First, as in carefully designed lab experiments, the task is well-defined and both the

choice options and the choice-relevant information that is available to contestants

are known. Second, the prizes that can be won dwarf the payoffs that are typically

employed in experiments. Third, the SCSD has been repeated numerous times

under similar conditions, creating the opportunity of a large-scale statistical analysis.

Other benefits of this long history are that contestants can be expected to be familiar

with the game and that we can explore potential learning effects.2

At the same time, the game show setting may evoke external validity concerns

because of selection procedures and because of the unusual conditions under which

choices are made. Section 5 reflects on these concerns. Any possible downside,

however, should be evaluated in the light of the availability of better alternatives.

Other opportunities for a large-scale, high-stakes field test of backward induction

are incredibly scarce, if not absent. Hence, following List (2023), the unique setting

should be embraced and not dismissed for its idiosyncrasies.

The present paper is not the first to use a TV game show as a real-world naturally-

occurring laboratory. Game shows have been used to study a wide range of other

topics in economics, such as decision making under risk (Gertner, 1993; Metrick,

1995; Post et al., 2008; Bombardini and Trebbi, 2012), discrimination (Levitt, 2004;

Belot et al., 2010), bargaining (van Dolder et al., 2015), willingness to compete (Hog-

arth et al., 2012; Buser et al., 2023), giving (Eberhardt et al., 2024), and cooperation

(List, 2006; Oberholzer-Gee et al., 2010; van den Assem et al., 2012; Turmunkh et al.,

2019).

We analyze a large sample of 10,071 renditions of the SCSD. In every rendition,

2The SCSD has also been proposed as a useful classroom tool for teaching probability and
game theory (Burks and Jaye, 2012; Swenson, 2015).
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three contestants make a spin decision, but a substantial fraction of the 30,213

decisions are trivial and of little value to our study. For Contestant 2 and 3, decisions

are trivial when their first-spin outcome is lower than the best preceding score (in

which case they always spin again). For Contestant 3, who spins last, decisions are

also trivial when their first-spin outcome is higher than the best preceding score (in

which case they always stop).3 We omit such decisions from our empirical analysis,

and exclusively focus on the decisions of Contestant 1 and on the remaining decisions

of Contestant 2.

We start our analysis by examining whether, when, and how contestants devi-

ate from the SPNE. We find that Contestants 1 and 2 frequently make suboptimal

decisions, and that the error rate of Contestant 1 is somewhat higher than that

of Contestant 2. Strikingly, Contestant 1 almost exclusively errs by underspin-

ning: stopping when it is optimal to spin. Contestant 2’s mistakes, by contrast,

are considerably more symmetric and involve only slightly more underspinning than

overspinning.

We then consider several explanations for suboptimal play that are well-rooted

in the literature. First, we examine whether contestants depart from the equilibrium

strategy because they make random errors in evaluating the expected utility of their

two choice options, and expect others to make similar mistakes. To test this expla-

nation, we estimate an agent quantal response equilibrium model (AQRE; McKelvey

and Palfrey, 1998). We find that a substantial proportion of the deviations from the

SPNE can be explained by random evaluation errors. The decisions of Contestant 2

are largely consistent with the model’s probabilistic predictions, but the model fails

to capture most of the underspinning of Contestant 1.

Next, we consider the possible role of omission bias, which is the tendency to

favor harmful inactions over harmful actions (Ritov and Baron, 1990, 1992; Spranca

et al., 1991; Feldman et al., 2020). Systematic underspinning in the SCSD can be

explained by a preference for elimination after not spinning (by an opponent who

obtains a higher score) over elimination after spinning (by exceeding 100 points).4

We find that allowing for omission bias in the AQRE model improves the goodness-

of-fit for Contestant 1, but at the same time introduces systematic prediction errors

for Contestant 2. Hence, omission bias fails to adequately explain the behavior that

we observe.

3Contestant 3 faces a nontrivial decision when they tie with the best preceding score, but such
situations are relatively rare.

4Walker et al. (2018) propose the related concept of sudden death aversion: the tendency to
avoid strategies that can lead to immediate defeat, even if these are optimal. In our setting, sudden
death aversion and omission bias are indistinguishable, because spinning (acting) entails the risk
of immediate elimination whereas not spinning (not acting) postpones possible elimination.
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Another possible explanation is that contestants may not properly backward

induct, and instead adopt a simplified representation of the game. Prior research

suggests that people have limited foresight, and look only one or a few steps ahead

in multi-stage strategic situations (Jehiel, 1995, 1998, 2001; Johnson et al., 2002;

Gabaix and Laibson, 2005; Gabaix et al., 2006; Mantovani, 2016; Ke, 2019; Rampal,

2022; Baranski and Reuben, 2023). We adjust our baseline AQRE model to allow

for the possibility that a contestant myopically behaves as if the next stage of the

game is also the last. Such a simplified frame lowers Contestant 1’s propensity

to spin, because beating only one subsequent contestant in expectation requires a

lower score than beating two. For Contestant 2, limited foresight coincides with full

backward induction because the next stage is also the last stage of the game. Our

limited foresight model accurately describes the observed behavior of contestants.

According to the estimation results, approximately 41 percent of the contestants

simplify the game by looking only one step ahead.

The overall conclusion therefore is that the deviations from the SPNE in this

high-stakes game are well explained by a combination of random evaluation errors

and limited foresight, and that the role of omission bias is limited. This conclusion

is robust to various alternative modeling assumptions.

Our findings diverge markedly from those of Tenorio and Cason (2002), who

explore a relatively small sample of renditions of the SCSD from 1994 and 1995.

They conclude that omission bias is a plausible explanation for the deviations from

the SPNE in their data, but their analysis is limited to simple comparisons, and

their evidence derives almost exclusively from decisions by Contestant 1 (due to

a lack of informative observations for Contestant 2). The present paper uses a

considerably larger sample, with many informative observations for both Contestant

1 and Contestant 2, which allows for the estimation of structural decision models

and for tests of competing hypotheses.

Our results are striking in the light of the long history of the show and its

popularity. A natural question is whether contestants’ behavior converges towards

the SPNE over time. To answer this question, we subdivide our sample into four

periods. For Contestant 1, we find that the frequency of deviations from the SPNE

decreases substantially and monotonically. For Contestant 2, there is no clear trend

over time. When we estimate the limited foresight model, we find that the fraction

of spinning decisions that are made in accordance with limited foresight decreases

monotonically from 65 percent in the first period to 18 percent in the last. Despite

this strong improvement, the results show that many contestants remain unable to

follow the optimal strategies deriving from backward induction, even after several
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decades of The Price Is Right.

The remainder of the paper is structured as follows. Section 2 introduces the

game show and the SCSD in more detail and outlines the equilibrium strategies.

Section 3 discusses the data and provides a descriptive analysis of deviations from

equilibrium play. Section 4 presents the main analyses and results, various ro-

bustness checks, and the learning analysis. Section 5 concludes and discusses our

findings.

2 The Game and Its Equilibrium Strategies

The Price Is Right was first aired in the United States in 1956. Through the years,

the format was introduced in many other countries, but here we exclusively consider

the American version. Every episode consists of multiple games. The game that is

central in our paper—the Showcase Showdown (SCSD)—was first included in 1975.

Apart from a change in 2008 (see below), the SCSD has remained the same since

1979. We exclusively consider episodes from 1979 onwards.

Every episode contains two renditions of the SCSD, with three contestants each.

Prior to the SCSD, every contestant plays two other games: the so-called One Bid

game, and a “pricing game”. In the One Bid game, four contestants guess the retail

price of a consumer product (such as a microwave or television).5 The contestant

whose guess is closest to the actual retail price without going over wins the product,

gets to play one of the many different pricing games, and will be one of the SCSD

contestants.6 In their pricing game, the contestant can win one or more prizes, often

by guessing the retail prices of consumer goods. After three contestants have won a

One Bid game and completed their pricing game, the first SCSD is played. In the

next part of every episode this combination of three One Bid games, three pricing

games, and one SCSD is repeated.

The winners of the two SCSDs proceed to the final of the episode. In this so-

called Showcase round, the two finalists have to guess the retail price of their own

respective showcase, which typically consists of multiple valuable prizes such as a

car, furniture, electronics, or a trip. The contestant whose guess is closest to the

retail price without exceeding it wins the contents of their showcase. If the winner’s

guess is within a specified range below the retail price ($100 until 1997-98, $250
5Contestants are selected by the producers through interviews with ticketed audience members

shortly before to the recording of the episode.
6Bennett and Hickman (1993), Berk et al. (1996), and Healy and Noussair (2004) use the One

Bid game to study strategic decision making. Atanasov et al. (2023) use it to study own-gender
favoritism.
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from 1998-99 onwards) they win both showcases; if both finalists’ guesses exceed the

retail price both showcases remain unclaimed.

In the SCSD, our game of interest, three contestants take turns to spin a big

wheel that contains all multiples of 5 up to 100. The contestant with the lowest

(highest) prior winnings spins first (last). Immediately after observing the outcome

of their first spin, a contestant has to decide whether to spin the wheel again.7

Their score is the outcome of the first spin if they spin once, and the sum of the

two spin outcomes if they spin twice. The contestant whose score is closest to 100

without exceeding is the winner and proceeds to the Showcase round.8 If two or

three contestants tie for the highest score, they enter a “spin-off” in which each

of them spins the wheel once more; the one who spins the highest number is the

winner. This procedure is repeated in the case of further ties.

On top of securing a place in the lucrative final, SCSD contestants can also win

one or two monetary bonus prizes. If a contestant scores exactly 100 points, they

receive $1,000 plus a bonus spin that yields an additional $10,000 ($5,000 before

2008-09) if the wheel lands on 5 or 15, or $25,000 ($10,000 before 2008-09) if it stops

at 100. If two or three contestants tie at a score of 100, the outcome of their bonus

spin counts as their spin-off score.

The optimal strategy for a contestant depends on the expected showcase value

and the bonus prizes. Coe and Butterworth (1995), Grosjean (1998), and Tenorio

and Cason (2002) derive the SPNE for a limited set of combinations of these values.

The three contestants’ equilibrium strategies, which can be found through backward

induction, take the form of optimal stopping rules that dictate when a contestant

should not use their second spin. Our sample covers a large time span, over which the

average retail price of the showcases varied considerably, and during which there was

a change in the bonus prizes. We therefore derive the optimal stopping thresholds for

a large set of combinations of expected showcase values and the two bonus schemes.

In line with previous work, we assume (i) that spin outcomes follow a discrete

uniform distribution from 5 to 100 with steps of 5, (ii) that contestants are risk

neutral, and (iii) that the chance of winning the Showcase round after winning the

SCSD is 50 percent. Section 4.4 examines the sensitivity of our results to the last

two assumptions. We use numerical methods to compute the optimal strategies.9

7The wheel must be spun for at least one full revolution.
8If the third contestant beats the best preceding score with their first spin, or if the first two

contestants went over 100, the third contestant automatically advances to the Showcase round.
In the latter case, Contestant 3 does spin the wheel once to try to win a bonus prize by spinning
exactly 100, but they are not given the choice to spin a second time.

9As also noted by Tenorio and Cason (2002), a complete analytical solution is infeasible due
to the discrete partitions of the wheel, the possibility of ties, and the presence of bonuses.
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Table 1 shows each contestant’s optimal strategy for various ranges of expected

showcase values, denoted E(S), and for the two different bonus schemes. For brevity,

the table displays the optimal strategies for empirically relevant ranges of E(S)

only.10 Furthermore, it omits the trivial optimal decisions of Contestant 2 and Con-

testant 3 in situations where their first-spin outcome is lower than the best preceding

score (where they should always spin again), and that of Contestant 3 when their

first-spin outcome beats the best preceding score (where they are automatically de-

clared the winner). The optimal stopping rule jumps discretely because the values

on the wheel are multiples of five.

Consider, for example, a rendition of the SCSD with the most recent bonus

scheme and where E(S) = $25, 000. Contestant 3 faces a nontrivial decision only

when they tie the best preceding score. If they tie with one previous contestant,

they should stop when the tie is at 55 or more (and spin otherwise). In the case of

a three-way tie, the stopping threshold is 70.

The optimal strategies of the other two contestants can be found through back-

ward induction. Assuming that Contestant 3 strictly adopts the optimal approach,

Contestant 2 is best off by stopping at 60 or more if they beat the score of Contestant

1, and by spinning otherwise. In the case of a tie with Contestant 1, Contestant 2’s

stopping threshold is 70. Contestant 1 has to anticipate the decisions of Contestant

2 and 3. Assuming that these two both follow the optimal strategy, Contestant 1’s

stopping threshold is 70.

3 Data and Preliminary Results

Our data are from the The Price Is Right Episode Guide.11 We accessed this fan-

edited website on 21 June 2021. At that time, it contained 5, 834 detailed recaps

of episodes of The Price Is Right from 1979 onwards. We successfully scraped the

data for one or both SCSDs for 5,307 episodes. After omitting special episodes with

a deviating prize structure, and the one available episode from the 1978-79 season,

our final sample contains 10,071 SCSDs from 5,235 different episodes that were aired

between 1979-80 and 2020-21.12 In most cases, we additionally obtained contestants’

names, the accumulated value of the prizes they earned prior to the SCSD, and the

10When E(S) goes to zero, the optimal stopping threshold converges to 100.
11See https://tpirepguide.com.
12Some types of special episodes featured a deviating SCSD bonus scheme or extra-

valuable prizes in the Showcase round. We identified and omitted such episodes using
https://www.priceisright.fandom.com, a collaborative website dedicated to The Price Is Right. We
omit the one episode from the 1978-79 season because we cannot reliably estimate the expected
showcase value for that season.
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Table 1: Optimal strategies

Contestant First spin E(S) Stopping threshold

Panel A: Bonus Scheme 1 (until 2008-09)

C1 $1, 532 ≤ E(S) < $4, 180 75
C1 E(S) ≥ $4, 180 70

C2 Better than C1 $2, 564 ≤ E(S) < $27, 826 60
C2 Better than C1 E(S) ≥ $27, 826 55
C2 Tied with C1 $2, 503 ≤ E(S) < $10, 702 75
C2 Tied with C1 E(S) ≥ $10, 702 70

C3 Tied with C1 or C2 $2, 000 ≤ E(S) < $4, 000 60
C3 Tied with C1 or C2 E(S) ≥ $4, 000 55
C3 Tied with C1 and C2 $2, 400 ≤ E(S) < $6, 000 75
C3 Tied with C1 and C2 E(S) ≥ $6, 000 70

Panel B: Bonus Scheme 2 (from 2008-09 onwards)

C1 $2, 489 ≤ E(S) < $6, 792 75
C1 E(S) ≥ $6, 792 70

C2 Better than C1 $4, 167 ≤ E(S) < $45, 217 60
C2 Better than C1 E(S) ≥ $45, 217 55
C2 Tied with C1 $4, 068 ≤ E(S) < $17, 391 75
C2 Tied with C1 E(S) ≥ $17, 391 70

C3 Tied with C1 or C2 $3, 250 ≤ E(S) < $6, 500 60
C3 Tied with C1 or C2 E(S) ≥ $6, 500 55
C3 Tied with C1 and C2 $3, 900 ≤ E(S) < $9, 750 75
C3 Tied with C1 and C2 E(S) ≥ $9, 750 70

Notes: The table shows the optimal strategies for various ranges of expected
showcase values and for the two different bonus schemes. Under Bonus Scheme
1 (Panel A), the bonus prizes are $1,000, $5,000, and $10,000; under Bonus
Scheme 2 (Panel B), the bonus prizes are $1,000, $10,000, and $25,000. The
first column indicates whether the contestant is the first (C1), second (C2),
or third (C3) to spin. The second column indicates whether the contestant’s
first spin beats or ties the best preceding score. The third column gives the
range for the expected showcase value. The last column gives the optimal
stopping threshold: the first-spin outcome at or above which the contestant
should stop, and below which they should spin again. The table omits the
trivial optimal decision of Contestant 2 and Contestant 3 in situations where
their first-spin outcome is lower than the best preceding score (always spin),
and that of Contestant 3 when their first-spin outcome beats the best preceding
score (always stop).

stated retail prices of the showcases. Table A1 in the Appendix shows the numbers

of episodes, SCSDs, and stated showcase prices in our sample for every season.

As a first analysis, we explore the extent to which contestants’ spinning deci-

sions are consistent with the SPNE. Because almost all Contestant 3’s decisions are

trivial—they are automatically declared the winner if their first-spin outcome beats

the best preceding score, and by default spin again if it is lower—we focus exclu-

sively on Contestants 1 and 2. For the same reason, we omit decisions of Contestant

2 that follow first-spin outcomes that are lower than the score of Contestant 1. This

leaves us with 10,071 spinning decisions for Contestant 1 and 4,488 for Contestant
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Figure 1: Average stated retail price of showcases across seasons
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Notes: The figure shows the average stated retail price of showcases for every season.
Error bars depict standard errors around the mean. Horizontal lines indicate the most
relevant expected showcase values at which the optimal stopping thresholds change. Ta-
ble A1 in the Appendix shows the number of included showcases per season.

2.

The previous section showed how the optimal stopping rule depends on a contes-

tant’s assessment of the expected showcase value. We make the simplifying assump-

tion that this subjective value equals the average stated retail price of the showcases

in the given season, and examine the sensitivity of our results to this assumption in

Section 4.4.

Figure 1 shows the average stated retail price per season. Throughout our sample

period, this average increased from $7,838 (1979-80) to $29,342 (2020-21), or by

approximately 3.3 percent per year. For comparison, the inflation in the US over

this period was 3.0 percent per year (US Consumer Price Index; OECD, 2021). The

horizontal lines indicate the most relevant thresholds at which the optimal stopping

rules change. The jumps reflect the change of the bonus prizes. At any expectation

higher than these thresholds, the stopping rules remain the same.

For Contestant 1, the average retail price was always well above the thresh-

old values of $4, 180 (until 2008-09) and $6, 792 (from 2008-09 onwards). Hence,

throughout our entire sample period Contestant 1 optimizes their play by stopping

if and only if their first spin is 70 or higher. For Contestant 2 we need to distinguish

between situations where their first spin beats the score of Contestant 1, and sit-
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uations where they tie.13 Contestant 2’s optimal stopping rule in situations where

their first spin beats Contestant 1’s score was also constant over time: the average

retail price never exceeded the critical values of $27, 826 (until 2008-09) and $45, 217

(from 2008-09 onwards), which means that they should stop if and only if their first

spin is 60 or higher. For ties the optimal stopping rule did change. Most of the

time—from the 1983-84 season onward—Contestant 2 was best off by stopping if

and only if the tie was at 70 or higher. Until the start of the 1983-84 season the

stopping threshold was 75.

When we compare contestants’ actual decisions with the optimal decisions, we

observe that only a small proportion deviate. For Contestant 1, 93.4 percent of the

10,071 decisions are in accordance with the equilibrium strategy. For Contestant 2,

95.9 percent of the 4,488 decisions are optimal. The low rates at which contestants

depart from optimality are not very surprising, because most decisions are easy.

When we exclusively consider “difficult” choice situations—which we define as sit-

uations where the first-spin outcome is no more than two steps below the stopping

threshold and no more than one step above it—we find that 72.9 percent of the 2,069

decisions of Contestant 1 and 79.5 percent of the 790 decisions of Contestant 2 are

in accordance with the equilibrium strategy. Hence, for these more difficult choice

situations, the rates of departure from optimality are considerable.

The deviations tend to be in one direction. If Contestants 1 and 2 were to follow

the optimal strategy, they would spin in 65.9 and 32.4 percent of all situations in

our sample, respectively. In reality, however, they spin only 59.6 and 30.9 percent of

the times. For the more difficult situations, the optimal spinning rates are 49.1 and

46.3 percent, whereas the actual rates are only 23.3 and 39.7 percent. Hence, these

global spinning statistics indicate that there is systematic underspinning, especially

for Contestant 1.

Figure 2 shows how often Contestant 1 (Panel A) and Contestant 2 (Panel B)

deviate from the optimal strategy, for every possible first-spin outcome.14 The dark

grey bars represent the deviations in situations where it is optimal to spin, the light

grey bars show the deviations in situations where it is optimal to stop. Clearly, at

first-spin outcomes of 60 and 65 Contestant 1 frequently departs from the equilibrium

strategy. In these situations, spinning is optimal but many instead choose to stop.

In contrast to these many underspinning errors, Contestant 1 displays hardly any

overspinning errors. For Contestant 2, the pattern looks different. Contestant 2

13Ties are relatively rare. Out of the 4,488 nontrivial spinning choices that we have for Contes-
tant 2, only 384 (8.6%) are ties.

14Figure 2 omits the (relatively rare) choice situations of Contestant 2 where they are tied with
Contestant 1, because the optimal stopping threshold is different for these situations.

11



Figure 2: Deviations from the SPNE
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Notes: The figure shows how often the decisions of Contestant 1 (Panel A, N=10,071) and
Contestant 2 (Panel B, N=4,104) deviate from the optimal strategy, for every possible first-spin
outcome. Panel B omits ties and thus exclusively considers choice situations where the first-
spin outcome of Contestant 2 beats the score of Contestant 1. Dark gray bars depict first-spin
outcomes at which it is optimal to spin, light gray bars depict first-spin outcomes at which it is
optimal to stop.

departs less frequently from the optimal strategy than Contestant 1. Moreover, in

comparison with Contestant 1, their deviations from optimality are considerably

more symmetric.

The costs of deviating from the SPNE are often sizable. Table A2 in the Ap-

pendix shows the costs when the expected showcase value is $30,000 and the second

bonus scheme applies. This combination is representative for the last 12 years of our

sample period.15 For example, for Contestant 1, stopping after a first-spin outcome

of 65 lowers their expected earnings by $393, and stopping after 60 lowers it by

$1,189. For Contestant 2, spinning after beating Contestant 1 with a first spin of 60

lowers their expected earnings by $1,008. The costs of stopping at 55—Contestant

2’s most frequent deviation from the SPNE—are relatively small at only $55.
15It is infeasible to provide a complete picture because the costs depend on the expected value

of the showcase and the bonus prizes, which both change over the course of our sample period.
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4 Analyses and Results

In the current section we propose and test three possible explanations for contes-

tants’ deviations from the SPNE. Section 4.1 introduces our baseline structural

model, which allows for the possibility that contestants make random evaluation

errors. Section 4.2 then extends this model with the possibility of omission bias,

whereas Section 4.3 instead extends it to allow for the possibility of limited fore-

sight. Section 4.4 presents several robustness checks, which include tests of various

alternative explanations. Last, Section 4.5 exploits the longitudinal dimension of

the data to explore whether there is evidence of learning over the years.

4.1 Random Errors

The SPNE is based on the assumption that contestants perfectly maximize their

expected utility, and never make mistakes. In reality, people of course will make

mistakes. In the SCSD, the costs of mistakes vary between choice situations, and

strongly depend on a contestant’s first spin outcome. In situations where spinning is

only slightly better than stopping, or vice versa, even a small evaluation error could

lead a contestant to deviate from the optimal choice. Depending on the relative

costs of over- or underspinning across all choice situations, random evaluation errors

can lead to a pattern of systematic deviation from the SPNE.

Moreover, a player who realizes that the choices of their opponents are not flaw-

less should take this into account in determining their optimal strategy. Factoring

in the mistakes of others may lead to optimal strategies that differ from the SPNE

(Goeree and Holt, 2001; Goeree et al., 2002, 2003). In the SCSD, mistakes of sub-

sequent opponents generally lower the incentive to spin again. Therefore, in theory,

the anticipation of mistakes could explain the underspinning as compared to the

SPNE.

To examine the role of random errors, we adopt the Quantal Response Equilib-

rium (QRE) concept (McKelvey and Palfrey, 1995; Chen et al., 1997). The QRE is

a stochastic generalization of the Nash equilibrium, and commonly used to account

for bounded rationality in strategic settings (see, for example, Capra et al., 1999;

Anderson et al., 2001; Goeree et al., 2002, 2003; Moinas and Pouget, 2013; Goeree

et al., 2016, 2017). The main underlying idea is that people make random mistakes

in evaluating the expected utilities of choice alternatives, and that they anticipate

that others do the same. Because the SCSD is a sequential game, we consider

the Agent Quantal Response Equilibrium (AQRE), a modification of the QRE for

extensive-form games (McKelvey and Palfrey, 1998). The AQRE concept has found
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many applications (see, for example, Fey et al., 1996; McKelvey and Palfrey, 1998;

Deck, 2001; Cason and Reynolds, 2005; Cai and Wang, 2006; McKelvey and Patty,

2006; Fehr et al., 2021).

Almost all of Contestant 3’s decisions are trivial, and therefore we assume that

Contestants 1 and 2 expect Contestant 3 to play their SPNE strategy without error.

Similarly, we assume that Contestant 1 does not expect Contestant 2 to err after a

first-spin outcome that is worse than Contestant 1’s score, because Contestant 2 by

default always spins again in such situations.

For all nontrivial choice situations, let EU s
ij(·) denote the expected utility of

action s ∈ {Spin, Stop} for Contestant i ∈ {1, 2} in SCSD j ∈ {1, 2, . . . , J}.
Contestants make random evaluation errors εsij and mistakenly consider ÊU

s

ij(·) =
EU s

ij(·) + εsij. Following convention, we assume that εsij is independently and iden-

tically distributed according to an extreme value distribution, which leads to the

following predicted spin probabilities (Goeree et al., 2005; Haile et al., 2008; Goeree

et al., 2020):

P Spin
ij =

eλEUSpin
ij

eλEUSpin
ij + eλEUStop

ij

(1)

λ can be interpreted as contestants’ rationality or payoff sensitivity parameter.

If λ → 0, contestants make completely random choices and spin with a 50 percent

likelihood; if λ → ∞, they follow the payoff-maximizing strategy with certainty. In

Section 4.4, we consider a more flexible specification that allows λ to differ between

Contestant 1 and Contestant 2.

The expected utilities of spinning and stopping both depend on the resulting

probability of winning the SCSD, the shape of the utility function, the chance of

winning the showcase after winning the SCSD, and the showcase value; for spinning,

the expected utility in addition depends on the bonus prizes. In our main analyses

we assume risk neutrality. We also assume that contestants believe that they have

a 50 percent chance of winning the showcase after winning the SCSD, and that the

expected showcase value equals the average stated retail price of all showcases in the

entire running season. We examine the sensitivity of the results to these assumptions

in Section 4.4.

We convert all nominal monetary values to 2015 dollars using the US Consumer

Price Index (OECD, 2021).16 To obtain more readable coefficients, we divide all

monetary values by 1,000. The next subsections expand this baseline model with

additional parameters that capture omission bias and limited foresight. We use

16For completeness, Section 4.4 also gives the results without correcting for inflation.
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Table 2: Estimation results

SPNE Baseline Omission bias Limited foresight OB & LF

λ - - 1.384 (0.028) 1.508 (0.032) 1.579 (0.039) 1.583 (0.039)
γ - - - - 0.803 (0.050) - - 0.110 (0.088)
β - - - - - - 0.410 (0.024) 0.371 (0.039)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,964 -1,843 -1,794 -1,794
AIC - 3,930 3,689 3,593 3,593

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.952 0.943 0.953 0.959 0.953 0.945
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.815 0.703 0.817 0.795 0.817 0.713
Brier score 0.066 0.041 0.046 0.035 0.037 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.176 0.173 0.132 0.185 0.120 0.174 0.120 0.174
Spinning bias -0.063 -0.014 -0.040 0.001 -0.013 0.021 0.007 0.001 0.006 0.004
Spinning bias (difficult) -0.258 -0.066 -0.217 0.009 -0.104 0.112 0.003 0.014 -0.001 0.028

Notes: The table shows the estimated parameters and goodness-of-fit statistics of various struc-
tural models of strategic decision making. SPNE is the model that adopts the binary predictions
from the subgame perfect Nash equilibrium, Baseline is the baseline AQRE model, Omission
bias is the AQRE model that incorporates omission bias, Limited foresight is the AQRE model
that allows for limited foresight, and OB & LF is the AQRE model with both omission bias
and limited foresight. λ is the estimated rationality parameter, γ is the estimated disutility of
self-elimination, and β is the estimated probability of limited foresight. Standard errors are in
parentheses. N is the number of spinning decisions, Log likelihood is the log likelihood value
of the estimation, and AIC is the Akaike Information Criterion value. Other goodness-of-fit
measures are given separately for Contestant 1 (C1 ) and Contestant 2 (C2 ), both for all choice
situations combined and for relatively difficult choice situations only. Difficult choice situations
are choices where the first-spin outcome is no more than two steps below the stopping threshold
and no more than one step above it. Hit rate is the fraction of correctly predicted decisions, Brier
score is the mean squared prediction error, and Spinning bias is the average difference between
contestants’ actual spinning decisions and the model’s spinning predictions.

maximum likelihood techniques to estimate the parameters. Because the number of

decisions of Contestant 1 in our sample is more than twice the number of decisions of

Contestant 2, we weigh the observations of Contestant 1 by (N1+N2)/2N1 and those

of Contestant 2 by (N1 + N2)/2N2, such that the overall weights for the two types

of contestants are equal and the average weight across all individual contestants

remains unity. Without this weighting, the results would be disproportionately

driven by the choices and idiosyncrasies of Contestant 1.

Table 2 presents the results. To compare how well the baseline AQRE model

explains contestants’ behavior relative to the SPNE, we consider three goodness-of-

fit statistics: the hit rate, the Brier score, and the spinning bias.

The hit rate of the model is the fraction of correctly predicted decisions. A pre-

diction is defined as correct if the model assigns a 50 percent or greater probability

to the contestant’s actual decision. The baseline model correctly predicts 93.4 per-

cent of Contestant 1’s decisions and 95.9 percent of Contestant 2’s decisions. These

high hit rates are not surprising, because most decisions in our sample are easy. For

relatively difficult choice situations—where the first-spin outcome is no more than

two steps below the stopping threshold and no more than one step above it —the

hit rate of the baseline model is 72.9 percent for Contestant 1 and 79.5 percent for
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Figure 3: Empirical spinning rates and baseline model predictions
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(B) Contestant 2

0

0.2

0.4

0.6

0.8

1

S
pi

nn
in

g 
ra

te

−0.4

0

0.4

10 20 30 40 50 60 70 80 90 100

First spin
D

iff
er

en
ce

Observed Predicted

Notes: The figure shows the observed spinning rate and the average probabilistic prediction of the
baseline model for Contestant 1 (Panel A, N=10,071) and for Contestant 2 (Panel B, N=4,488)
for all possible first-spin outcomes. The lower parts of the panels show the differences between
the observed and predicted spinning rates.

Contestant 2. These hit rates are identical to those for the SPNE, suggesting that

allowing for evaluation errors does not add any descriptive power. Due to the binary

nature of “hits”, however, the measure is rather crude. In contrast to the SPNE,

the predictions of the AQRE are probabilistic, and much of the variation in these

probabilities is not reflected in the hit rate.

To assess the difference between the observed choices and the probabilistic pre-

dictions, we calculate the Brier score (Brier, 1950). The Brier score is the mean

squared prediction error. For the binary predictions of the SPNE, the Brier score is

the complement of the hit rate. Compared to the Brier scores for the SPNE, those

for the baseline model are substantially lower. The improvement is especially strong

for Contestant 1; for difficult decisions, for example, the statistic declines from 0.271

to 0.176.

The Brier score is a good measure to assess overall predictive accuracy, but it is

uninformative of the degree to which the model systematically over- or underpredicts

contestants’ propensity to spin. To visually explore whether there is any systematic

deviation, Figure 3 plots the actual spinning rates against the average probabilistic

predictions of the baseline AQRE model for every possible first-spin outcome. The

figure clearly shows that Contestant 1 underspins relative to the predictions. At

first-spin outcomes of 60, 65 and 70, the fraction of contestants who actually use
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their second spin is approximately 25-30 percentage points lower than predicted.

For Contestant 2 the differences are much smaller, with the actual spinning rate on

average being slightly higher than predicted.

The spinning bias quantifies the degree of systematic deviation, and is calculated

as the average difference between contestants’ actual spinning decisions, which take a

value of either 0 (stop) or 1 (spin), and the model’s probabilistic spinning predictions,

which can take any value between 0 and 1. A positive value of this goodness-of-fit

statistic indicates overspinning, a negative value underspinning. Confirming the

pattern in Figure 3, the spinning bias is negative for Contestant 1: -4.0 percentage

points at the aggregate level, and -21.7 percentage points for the relatively difficult

first-spin outcomes. This degree of contestants’ systematic underspinning according

to the baseline model is high, but lower than the negative spinning bias of Contes-

tant 1 relative to the SPNE (-6.3 and -25.8 percentage points, respectively). For

Contestant 2, the spinning bias is positive and close to zero: 0.1 percentage points

across all choices, and 0.9 for the more difficult ones.

Taken together, these findings suggest that random evaluation errors can explain

some of the deviations from the SPNE. The systematic underspinning of Contestant

1, however, remains largely unexplained.

4.2 Omission Bias

Tenorio and Cason (2002) explore a relatively small sample of renditions of the

SCSD from 1994 and 1995, and similarly report that contestants tend to stop when

it is actually optimal to spin. Their evidence derives primarily from Contestant 1,

as their sample of informative decisions of Contestant 2 is too small to draw reliable

conclusions. Tenorio and Cason propose that the underspinning can be explained by

omission bias—the tendency to favor harmful inactions over harmful actions (Ritov

and Baron, 1990, 1992; Spranca et al., 1991; Feldman et al., 2020). Other research

shows that omission bias can play an important role in settings where decision

makers face a choice between action and inaction. Examples include vaccination

decisions, debt repayment, blackjack, and sports refereeing (Ritov and Baron, 1990;

Asch et al., 1994; Carlin and Robinson, 2009; DiBonaventura and Chapman, 2008;

Moskowitz and Wertheim, 2011; Hallsworth et al., 2023).

In the SCSD, contestants will be less likely to spin if they prefer elimination after

not spinning (by an opponent who obtains a higher score) over elimination after

spinning (by exceeding 100 points). To examine whether omission bias can explain

the observed behavior, we extend the baseline structural model with γ, a parameter

that captures the disutility of self-elimination. In our baseline specification, the
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Figure 4: Empirical spinning rates and omission bias model predictions
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(B) Contestant 2
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Notes: The figure shows the observed spinning rate and the average probabilistic prediction of
the omission bias model for Contestant 1 (Panel A, N=10,071) and for Contestant 2 (Panel B,
N=4,488) for all possible first-spin outcomes. The lower parts of the panels show the differences
between the observed and predicted spinning rates.

utility from elimination is always zero; in this alternative specification, however, the

utility is −γ if the contestant spins again and exceeds the maximum score of 100.

The utility of elimination after an opponent obtains a higher score remains zero.

Table 2 shows the results for the AQRE model with omission bias. The estimated

value of γ is 0.803, implying that the disutility of losing through self-elimination is

equivalent to the disutility of a monetary loss of $803 (in 2015 dollars). This model

explains contestants’ choices better than the baseline model, also when we account

for its additional parameter: both the log-likelihood and the AIC show a substantial

improvement. A likelihood-ratio test confirms that the model with omission bias

significantly outperforms the baseline model (χ2(1) = 242.43, p < 0.001).

The separate goodness-of-fit measures for the two contestants show that the

omission bias model provides a better account of Contestant 1’s decisions but a

worse account of Contestant 2’s decisions, as compared to the baseline model. For

Contestant 1, the overall hit rate improves from 93.4 to 95.2 percent, and the hit

rate for difficult decisions improves from 72.9 to 81.5 percent. The improved fit

for Contestant 1 is also reflected in lower Brier scores. The opposite holds for

Contestant 2: the overall hit rate deteriorates from 95.9 to 94.3 percent, the hit

rate for more difficult decisions deteriorates from 79.5 to 70.3 percent, and the Brier

scores increase.
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Figure 4 compares the actual spinning rates and the average probabilistic pre-

dictions of the omission-bias model for all first-spin outcomes. For Contestant 1,

as compared to the baseline model, the predictions are substantially closer to the

actual spinning rates. As shown in Table 2, the remaining spinning bias of Contes-

tant 1 is -1.3 percentage points, which compares favorably to the -4.0 percentage

points of the baseline model. For relatively difficult first-spin outcomes the degree

of underspinning decreases from 21.7 to 10.4 percentage points.

The reduction of the systematic prediction error for Contestant 1, however, is

largely offset by an increase for Contestant 2. Contestant 2 clearly overspins relative

to the predictions of the omission bias model. Their spinning bias increases from 0.1

to 2.1 percentage points across all choices, and from 0.9 to 11.2 percentage points

for the more difficult ones.

Altogether, omission bias thus fails to adequately explain contestants’ behav-

ior. The additional parameter partially captures the underspinning of Contestant

1 and improves the overall fit of the model, but at the same time introduces large

systematic prediction errors for Contestant 2.

4.3 Limited Foresight

A possible alternative explanation for the suboptimal behavior of contestants is

limited foresight. A large body of theoretical research proposes that people reason

only one or a few steps ahead (Jehiel, 1995, 1998, 2001; Jackson and Wolinsky, 1996;

Gabaix and Laibson, 2005; Ke, 2019; Bossaerts et al., 2022; Rampal, 2022). Several

experimental studies support this notion (Neelin et al., 1988; Johnson et al., 2002;

Gabaix et al., 2006; Mantovani, 2016; Barreda-Tarrazona et al., 2021; Rampal, 2022;

Baranski and Reuben, 2023).

To simplify the decision problem, an SCSD contestant may adopt a myopic repre-

sentation and optimize their chances of beating the next contestant only. If Contes-

tant 1 only considers Contestant 2 in their spinning choice and ignores the presence

of Contestant 3, then Contestant 1 will be less inclined to spin because beating only

one subsequent contestant in expectation requires a lower score than beating two.

For Contestant 2, limited foresight coincides with full backward induction because

the next stage is also the last stage of the game.

Our limited foresight model expands the baseline model with the possibility that

contestants reduce complexity by considering the next contestant only. We assume

that myopic contestants believe that this next contestant behaves as if they are the

last. A contestant adopts the simplified frame with probability β, and correctly

considers all future contestants with probability 1 − β. In this mixture model, the
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likelihood of spinning is the probability-weighted average of the likelihood under the

assumption of limited foresight (with probability β) and the likelihood under full

backward induction (with probability 1− β).

The penultimate column of Table 2 shows the results for the limited foresight

model. The estimated β coefficient is 0.410, suggesting that 41 percent of the spin-

ning decisions are made in accordance with limited foresight, while the remaining

59 percent are consistent with full backward induction. The empirical fit is much

better than the fit of the baseline and omission bias models: both the log-likelihood

and the AIC show considerable improvements. A likelihood-ratio test confirms that

the current model outperforms the baseline model (χ2(1) = 338.99, p < 0.001), and

a Vuong test for non-nested models confirms that it also outperforms the omission

bias model (Z = 6.86, p < 0.001).

As compared to the omission bias model, the limited foresight model provides a

slightly better account of Contestant 1’s decisions, and a substantially better account

of Contestant 2’s decisions. For Contestant 1, the hit rates are nearly identical to

those of the omission bias model, and the Brier scores are better. For Contestant

2, the overall hit rate increases from 94.3 to 95.9 percent, the hit rate for difficult

first-spin outcomes increases from 70.3 to 79.5 percent, and the Brier scores improve.

Figure 5 plots the actual spinning rates against the average probabilistic predic-

tions of the limited foresight model, and shows that the model accurately captures

the observed behavior. For both Contestant 1 and Contestant 2, the actual and pre-

dicted spinning rates approximately coincide. As also shown in Table 2, barely any

spinning bias remains. Across all choices, Contestant 1 spins 0.7 percentage points

more often than predicted by the model, and Contestant 2 spins only 0.1 percentage

points more often. For the more difficult choices, the spinning biases are a mere 0.3

and 1.4 percentage points, respectively.

The limited foresight model thus provides an accurate account of contestants’

spinning decisions. To examine whether contestants’ choices are in addition partly

driven by omission bias, we estimate a model that allows for both omission bias

and limited foresight. The final column of Table 2 shows the estimation results.

The results clearly speak against omission bias as a possible driver. First, the omis-

sion bias parameter is relatively small and statistically insignificant. Second, the

goodness-of-fit of the model is similar to that of the limited foresight model: nei-

ther the log-likelihood nor the AIC value improves, and a likelihood-ratio test does

not reject the hypothesis that the two models explain spinning choices equally well

(χ2(1) = 1.56, p = 0.212).

All in all, the conclusion from these analyses is that the behavior of contestants is
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Figure 5: Empirical spinning rates and limited foresight model predictions
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(B) Contestant 2
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Notes: The figure shows the observed spinning rate and the average probabilistic prediction of
the limited foresight model for Contestant 1 (Panel A, N=10,071) and for Contestant 2 (Panel B,
N=4,488) for all possible first-spin outcomes. The lower parts of the panels show the differences
between the observed and predicted spinning rates.

well described by an AQRE model with limited foresight, where all contestants make

random evaluation errors and many simplify the decision problem by myopically

considering the next stage of the game only.

4.4 Robustness Checks

The structural models require a variety of assumptions. In the present subsection, we

explore the sensitivity of the results to risk aversion (Section 4.4.1), to beliefs about

the expected value of winning the SCSD (Section 4.4.2), to the weight attached to

the opportunity of winning bonus prizes (Section 4.4.3), and to various other, more

minor aspects (Section 4.4.4).

4.4.1 Risk Aversion

The choice between spinning and stopping is essentially a choice between two risky

prospects. In the analyses thus far we assumed that contestants are risk neutral.

Here we explore the sensitivity of the results to the alternative assumption that

contestants are risk averse. We now assume that they have a constant absolute risk

aversion (CARA) utility function of the form U(x) = 1 − expθx, where x is the

monetary value of the prospective winnings and θ is the risk-aversion coefficient.
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Table 3: Estimation results under alternative modeling choices (1/2)

SPNE Baseline Omission bias Limited foresight OB & LF

Panel A: High risk aversion

λ - - 9.503 (0.191) 10.811 (0.231) 11.234 (0.286) 11.395 (0.286)
γ - - - - 0.147 (0.007) - - 0.049 (0.012)
β - - - - - - 0.499 (0.024) 0.376 (0.039)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,037 -1,833 -1,791 -1,783
AIC - 4,076 3,669 3,587 3,573

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.955 0.950 0.943 0.953 0.955 0.953 0.949
Hit rate (difficult) 0.729 0.795 0.729 0.789 0.806 0.722 0.817 0.789 0.817 0.753
Brier score 0.066 0.041 0.049 0.035 0.037 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.195 0.158 0.133 0.171 0.122 0.158 0.121 0.158
Spinning bias -0.063 -0.014 -0.048 -0.005 -0.014 0.021 0.009 -0.005 0.007 0.004
Spinning bias (difficult) -0.258 -0.066 -0.252 -0.016 -0.103 0.118 0.013 -0.011 0.000 0.037

Panel B: Discounted showcase value

λ - - 2.609 (0.052) 2.972 (0.064) 3.070 (0.078) 3.119 (0.077)
γ - - - - 0.537 (0.026) - - 0.202 (0.045)
β - - - - - - 0.498 (0.025) 0.360 (0.039)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,038 -1,832 -1,797 -1,787
AIC - 4,078 3,667 3,598 3,580

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.956 0.934 0.956 0.952 0.943 0.953 0.956 0.953 0.947
Hit rate (difficult) 0.729 0.789 0.729 0.789 0.815 0.718 0.817 0.789 0.817 0.739
Brier score 0.066 0.044 0.049 0.035 0.036 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.211 0.193 0.162 0.132 0.173 0.121 0.162 0.120 0.161
Spinning bias -0.063 -0.018 -0.047 -0.006 -0.013 0.020 0.009 -0.006 0.006 0.004
Spinning bias (difficult) -0.258 -0.076 -0.251 -0.020 -0.101 0.115 0.012 -0.015 -0.003 0.038

Panel C: No bonus prizes

λ - - 1.458 (0.030) 1.530 (0.032) 1.609 (0.039) 1.606 (0.040)
γ - - - - 0.532 (0.050) - - -0.185 (0.087)
β - - - - - - 0.320 (0.024) 0.384 (0.039)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,912 -1,856 -1,804 -1,802
AIC - 3,826 3,716 3,613 3,610

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.943 0.934 0.943 0.953 0.943 0.953 0.943 0.953 0.947
Hit rate (difficult) 0.729 0.701 0.729 0.701 0.817 0.701 0.817 0.701 0.817 0.727
Brier score 0.066 0.057 0.042 0.035 0.037 0.037 0.034 0.036 0.034 0.035
Brier score (difficult) 0.271 0.299 0.160 0.171 0.133 0.183 0.119 0.172 0.120 0.170
Spinning bias -0.063 0.026 -0.032 0.009 -0.014 0.022 0.006 0.009 0.007 0.004
Spinning bias (difficult) -0.258 0.141 -0.183 0.038 -0.107 0.109 -0.007 0.038 0.001 0.012

Notes: The table shows the results for three alternative modeling choices. Panel A shows the
results under the assumption that contestants have CARA utility, with a certainty equivalent
of $2,500 for a 50-50 lottery of winning $25,000 or $0. Panel B shows the results under the
assumption that contestants value showcases at 50 percent of the stated retail price. Panel
C shows the results under the assumption that contestants ignore the bonus prizes. Other
definitions are as in Table 2.

We set θ such that the certainty equivalent of a 50-50 lottery of winning $25,000
or $0 is $2,500, reflecting a high degree of risk aversion. To obtain more readable

coefficients, we scale the utility function such that the utility of $1,000 equals unity.

Table 3, Panel A presents the results. Introducing high risk aversion leaves

the goodness-of-fit statistics of the binary predictions of the SPNE completely un-

changed, strongly worsens the log-likelihood of the baseline model, and somewhat

improves the fit of the models with omission bias, limited foresight, and the com-

bination of these. Contestant 1 still underspins compared to the predictions of the

baseline model, whereas Contestant 2 still overspins compared to the predictions of

the omission bias model. The limited foresight model again provides an accurate
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account of contestants’ spinning decisions, and displays a significantly better fit than

the omission bias model (Vuong test: Z = 5.02, p < 0.001). We find similar results

for more moderate degrees of risk aversion, for example when we set θ such that

the certainty equivalent of the 50-50 lottery of winning $25,000 or $0 is $5,000 or

$10,000 (see Table A3 in the Appendix). The main conclusions from the previous

analyses thus do not hinge on the assumption of risk neutrality.17

4.4.2 Discounting the Showcase Value

The optimal strategies and stochastic model predictions depend on the expected

value of the showcase, E(S), relative to the value of the monetary bonus prizes. For

the main analyses, we assumed that the value of a showcase equals its stated retail

price. The stated retail price is a natural and salient value, but in reality contestants

will likely discount it. The showcase prizes are selected by the game show producers,

not by the contestants themselves, and will mostly not align well with contestants’

preferences.18 As a robustness check, we re-estimate the structural models under the

alternative assumption that contestants value showcases at 50 percent of the stated

retail price.19

Table 3, Panel B presents the results. Discounting the showcase value leads to a

worse fit of the baseline model and stronger evidence of underspinning. This is not

surprising, because a lower expected showcase value increases the relative attrac-

tiveness of the bonus prizes, and thus increases the incentive to spin a second time.

At the same time, limited foresight again provides a better account of contestants’

spinning decisions than omission bias (Vuong test: Z = 4.83, p < 0.001).20

17Under strong risk aversion (Table 3, Panel A), adding the possibility of omission bias to the
limited foresight model yields a statistically significant improvement of the empirical fit (LR test:
χ2(1) = 15.99, p < 0.001). Under medium and low risk aversion (Table A3 in the Appendix),
this improvement is much weaker or absent (LR test medium: χ2(1) = 3.84, p = 0.050; low:
χ2(1) = 0.93, p = 0.335).

18Contestants should further discount the showcase value because of taxes. Although taxes
are levied over both (monetary) bonus prizes and (generally non-monetary) showcase prizes, taxes
generally make the showcase prizes comparatively less attractive. The reason is that the showcase
prizes are taxed on the basis of their (relatively high, non-discounted) retail prices.

19The effect of discounting the showcase value is equivalent to the effect of lowering contestants’
perceived chance of winning the showcase after winning the SCSD. The present robustness test
therefore also captures the possibility that this subjective probability is smaller than the 50 percent
that we assumed in the main analyses.

20Extending the limited foresight model by allowing for omission bias now does yield a significant
increase in explanatory power (LR test: χ2(1) = 20.13 and p < 0.001).
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4.4.3 Ignoring Bonus Prizes

A possible explanation for underspinning is that contestants are overly focused on

reaching the final of the episode, and attach a relatively low weight to the possibility

of winning one or two bonus prizes by obtaining a score of exactly 100. In this section,

we re-estimate the structural models under the extreme assumption that contestants

completely ignore the existence of the bonus prizes.21

Table 3, Panel C presents the results. As expected, ignoring the bonus prizes

improves the overall fit of the baseline model. The fit of the models with omission

bias, limited foresight, and the combination of these, however, is somewhat worse.

More importantly, the limited foresight model still explains choices substantially

better than the omission bias model (Vuong test: Z = 9.08, p < 0.001).22

4.4.4 Other Robustness Checks

We perform four additional analyses to examine the robustness of our results to

alternative modeling choices. First, instead of weighting the observations for Con-

testants 1 and 2 to correct for the imbalance in the sample sizes, we now give each

observation equal weight. Second, we increase the flexibility of the structural models

by allowing Contestant 1 and Contestant 2 to have different rationality parameters.

As a third robustness check, we use the original, nominal monetary values instead

of the inflation-corrected, real monetary values. Last, we assume that the expected

showcase value equals the average stated retail price of all showcases in the previous

season instead of the running season.

The four sets of results are in Table 4. In all cases, the limited foresight model

provides a much better account of contestants’ choices than the omission bias model

(Vuong tests: all Z > 2.54, all p < 0.006).23 The likelihood that a contestant myopi-

cally only considers the next stage of the game is barely affected by the alternative

approaches: the limited foresight parameter is always close to the 41 percent that

21This robustness test also captures the possibility that contestants expect to derive relatively
much utility from playing the Showcase final, for example because they are overconfident about
their chances of winning the showcase, or because of the enjoyment associated with “winning the
episode”.

22Combining omission bias and limited foresight yields significantly more explanatory power
than limited foresight alone (LR test: χ2(1) = 4.50 and p = 0.034). Note, however, that the
estimated omission bias parameter is negative, which implies that people would have a preference
for harmful actions over harmful inactions, and thus goes against the hypothesis.

23In three cases, adding the possibility of omission bias to the limited foresight model improves
the empirical fit: under equal weighting, with separate rationality parameters, and when using
nominal monetary values (LR tests: all χ2(1) > 4.35, all p < 0.037). There is no significant
improvement when the expected showcase value is based on the previous season (LR test: χ2(1) =
1.29, p = 0.255).
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Table 4: Estimation results under alternative modeling choices (2/2)

SPNE Baseline Omission bias Limited foresight OB & LF

Panel A: No weighting

λ - - 1.423 (0.027) 1.677 (0.035) 1.764 (0.047) 1.776 (0.045)
γ - - - - 1.051 (0.046) - - 0.385 (0.113)
β - - - - - - 0.412 (0.020) 0.284 (0.042)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,049 -1,814 -1,791 -1,786
AIC - 4,101 3,633 3,586 3,578

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.953 0.943 0.953 0.959 0.953 0.943
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.817 0.705 0.817 0.795 0.817 0.703
Brier score 0.066 0.041 0.046 0.035 0.035 0.039 0.034 0.035 0.034 0.036
Brier score (difficult) 0.271 0.205 0.177 0.173 0.125 0.197 0.121 0.175 0.120 0.179
Spinning bias -0.063 -0.014 -0.041 0.001 -0.008 0.027 0.005 0.001 0.003 0.011
Spinning bias (difficult) -0.258 -0.066 -0.217 0.010 -0.066 0.147 0.011 0.017 -0.003 0.069

Panel B: Separate rationality parameters

λ1 - - 1.481 (0.038) 1.980 (0.063) 2.303 (0.111) 2.324 (0.108)
λ2 - - 1.220 (0.042) 1.087 (0.037) 1.232 (0.042) 1.198 (0.042)
γ - - - - 1.086 (0.052) - - 0.402 (0.098)
β - - - - - - 0.424 (0.021) 0.303 (0.036)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,954 -1,767 -1,731 -1,723
AIC - 3,911 3,539 3,468 3,454

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.953 0.945 0.953 0.959 0.953 0.943
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.817 0.713 0.817 0.795 0.817 0.703
Brier score 0.066 0.041 0.046 0.035 0.035 0.038 0.035 0.035 0.035 0.035
Brier score (difficult) 0.271 0.205 0.178 0.173 0.125 0.186 0.125 0.173 0.124 0.175
Spinning bias -0.063 -0.014 -0.043 0.001 -0.011 0.027 0.003 0.001 0.001 0.011
Spinning bias (difficult) -0.258 -0.066 -0.217 0.004 -0.056 0.114 0.029 0.004 0.021 0.050

Panel C: Nominal monetary values

λ - - 1.775 (0.037) 1.925 (0.042) 2.051 (0.052) 2.057 (0.051)
γ - - - - 0.620 (0.039) - - 0.129 (0.062)
β - - - - - - 0.405 (0.024) 0.351 (0.035)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -2,013 -1,892 -1,837 -1,835
AIC - 4,028 3,788 3,679 3,676

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.950 0.943 0.953 0.959 0.953 0.943
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.803 0.703 0.817 0.795 0.817 0.703
Brier score 0.066 0.041 0.046 0.036 0.037 0.038 0.035 0.036 0.034 0.036
Brier score (difficult) 0.271 0.205 0.175 0.175 0.130 0.186 0.121 0.176 0.120 0.177
Spinning bias -0.063 -0.014 -0.038 0.002 -0.011 0.022 0.008 0.001 0.007 0.006
Spinning bias (difficult) -0.258 -0.066 -0.220 0.008 -0.110 0.108 0.000 0.013 -0.006 0.034

Panel D: Last season’s showcase values

λ - - 1.367 (0.028) 1.490 (0.032) 1.561 (0.039) 1.565 (0.039)
γ - - - - 0.807 (0.051) - - 0.101 (0.089)
β - - - - - - 0.409 (0.024) 0.374 (0.039)

N - 14,475 14,475 14,475 14,475
Log-likelihood - -1,959 -1,840 -1,789 -1,788
AIC - 3,919 3,683 3,582 3,583

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.935 0.959 0.935 0.959 0.952 0.943 0.952 0.959 0.952 0.948
Hit rate (difficult) 0.731 0.794 0.731 0.794 0.817 0.701 0.817 0.794 0.817 0.733
Brier score 0.065 0.041 0.046 0.035 0.037 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.269 0.206 0.176 0.173 0.132 0.186 0.120 0.174 0.120 0.174
Spinning bias -0.063 -0.015 -0.040 0.001 -0.013 0.021 0.007 0.001 0.007 0.004
Spinning bias (difficult) -0.258 -0.066 -0.217 0.010 -0.104 0.112 0.003 0.014 -0.001 0.028

Notes: The table shows the results for four alternative modeling choices. Panel A shows the
results when all individual observations for Contestants 1 and 2 are equally weighted, that is,
without correcting for the imbalance in the sample sizes. Panel B shows the results when the
rationality parameter, λ, is allowed to differ between Contestant 1 and Contestant 2. Panel C
shows the results when nominal instead of real monetary values are used. Panel D shows the
results under the assumption that the expected showcase value equals the average stated retail
price of all showcases in the previous season instead of the running season. Other definitions are
as in Table 2.
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we found previously.

Finally, a possible concern may be that the order in which contestants take turns

spinning the wheel is not random, but determined by the sum of the prizes they won

in the previous games. This can be problematic if there is a relationship between

contestants’ prior winnings and their rationality. Such a relationship, however, is not

very likely because the nature of the prior games is such that winnings are largely

driven by luck. Moreover, empirically there is no evidence of such a relationship.

When we regress the likelihood of following the optimal strategy on prior winnings,

the regression coefficient is economically and statistically insignificant, regardless of

whether we consider a linear or a log-linear relationship, and regardless of whether

we consider all choices or difficult choices only (see Table A4 in the Appendix).

4.5 Learning

The SCSD has been running uninterruptedly for more than 40 years. This long his-

tory opens up the possibility to investigate whether behavior converges towards the

rational equilibrium strategies over time, as contestants can learn about the game

and the behavior of their opponents. In laboratory experiments, game theory tends

to describe the behavior of experienced subjects better than that of inexperienced

subjects (Fudenberg and Levine, 1998, 2009, 2016). Although SCSD contestants can-

not gain experience themselves, they can potentially learn by observing the choices

and outcomes of others (Duffy and Feltovich, 1999; Armantier, 2004; Simonsohn

et al., 2008). Over time, the number of existing episodes has grown, and episodes

have become more readily available. In addition, with the advent of the internet

and modern communication technologies, people have become better able to share

and discuss the optimal strategies.

To explore whether there is any evidence of learning, we divide our data into

four different time periods: (i) seasons 1979-80 to 1992-93, (ii) 1993-94 to 2007-08,

(iii) 2008-09 to 2014-15, and (iv) 2015-16 to 2020-21.24

For each of the four time periods, Figure 6 shows how often Contestants 1 and

2 deviate from the SPNE. For Contestant 1, there is a clear downward trend in the

frequency of mistakes: the error rate decreases monotonically from 8.2 percent in

Period 1 to 5.1 percent in Period 4. Nearly all of Contestant 1’s deviations from the

SPNE are underspinning errors, and the improvement over time almost fully reflects

a reduction in underspinning. For Contestant 2, there is no clear trend in the

overall quality of spinning decisions, with a constant error rate of roughly 4 percent

24We first separate the data for the two different bonus schemes, and then split the data for
each bonus scheme into two periods of roughly equal length.
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Figure 6: Deviations from the SPNE per period
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Notes: The figure shows the fraction of spinning decisions by Contestant 1 (Panel A) and Con-
testant 2 (Panel B) that deviate from the SPNE, for four different time periods. The first period
covers seasons 1979-80 to 1992-93, the second 1993-94 to 2007-08, the third 2008-09 to 2014-15,
and the fourth 2015-16 to 2020-21. The dark gray parts of the bars reflect underspinning errors,
the light gray parts reflect overspinning errors.

across all periods. In Periods 1 to 3 Contestant 2 exhibits more underspinning than

overspinning, while in Period 4 these errors roughly balance out.

Of course comparing behavior in different time periods in this way is rather

crude, because the costs of mistakes can be very different at different points in time

due to the changing expected showcase value and the two different bonus schemes.

The structural models account for such changes and confirm the improvement of

Contestant 1’s decisions. Table 5 shows the period-by-period estimation results

for the limited foresight model. In line with the strong reduction of Contestant 1’s

underspinning relative to the SPNE, the fraction of spinning decisions that are made

in accordance with limited foresight diminishes significantly over time: β decreases

monotonically from 65.4 to 18.3 percent.

The improved decision making over time is in line with learning. The results for

the last period, however, show that even after several decades of The Price Is Right,

a sizable proportion of contestants remain unable to follow the optimal strategies

deriving from backward induction.
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Table 5: Estimation results per period

Period 1 Period 2 Period 3 Period 4

λ 1.480 (0.098) 1.477 (0.058) 1.722 (0.088) 1.683 (0.090)
β 0.654 (0.067) 0.491 (0.039) 0.345 (0.045) 0.183 (0.050)

N 2,012 5,876 3,770 2,901
Log-likelihood -260 -726 -425 -361
AIC 525 1,456 854 726

C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.950 0.953 0.950 0.959 0.955 0.963 0.960 0.959
Hit rate (difficult) 0.838 0.781 0.807 0.786 0.831 0.798 0.826 0.815
Brier score 0.038 0.036 0.034 0.034 0.032 0.031 0.030 0.042
Brier score (difficult) 0.114 0.158 0.117 0.174 0.112 0.167 0.122 0.190
Spinning bias 0.012 -0.006 0.011 -0.003 0.003 -0.001 -0.002 0.019
Spinning bias (difficult) 0.019 -0.021 0.006 -0.015 0.000 -0.006 -0.041 0.105

Notes: The table shows the estimated parameters and the goodness-of-fit statistics of the
structural model with limited foresight for four different time periods. The first period covers
seasons 1979-80 to 1992-93, the second 1993-94 to 2007-08, the third 2008-09 to 2014-15,
and the fourth 2015-16 to 2020-21. Other definitions are as in Table 2.

5 Conclusion and Discussion

The present paper examines high-stakes strategic decision making in the Showcase

Showdown (SCSD), a sequential game of perfect information that is part of the long-

running American TV game show The Price Is Right. The optimal strategies for

this game can be found through backward induction. Most tests of the descriptive

validity of backward induction as a solution concept rely on controlled laboratory

experiments.25 The SCSD provides an appealing alternative test bed, allowing for

assessing the descriptive validity under conditions that are markedly different. The

high stakes and ample learning opportunities provide a particularly benign setting

for game-theoretic predictions to hold.

In spite of this, we find that contestants systematically deviate from the unique

subgame perfect Nash equilibrium (SPNE). Their behavior is well explained by a

modified agent quantal response equilibrium model that not only allows for random

evaluation errors but also for limited foresight.26 The results suggest that contestants

are likely to simplify the decision problem by adopting a myopic representation and

optimize their chances of beating the next contestant only. Our findings are robust to

a rich variety of alternative modeling choices, including those regarding risk aversion.

Omission bias plays little to no role, depending on the exact specification. In line

with learning, we find that the frequency of deviations from the SPNE and the

estimated degree of limited foresight decrease over the course of our sample period.

25One exception is Spenkuch et al. (2018), who find that voting behavior of US Senators during
roll-call votes is largely consistent with the equilibrium predictions of a model in which the senators
rely on backward induction.

26Chakraborty and Kendall (2023) analyze a single-player decision problem that requires sub-
jects to reason contingently about their own decisions at hypothetical future events, and similarly
find that behavior is best described by a model that combines QRE-like noise and limited foresight.
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However, both systematic and non-systematic deviations remain commonplace, even

after several decades.

Various published papers have derived the equilibrium strategies for the SCSD.

Apparently, many contestants do not take heed of this information before coming on

the show. This is consistent with research that demonstrates that people frequently

do not use important and readily available information (for an overview, see Handel

and Schwartzstein, 2018). Such ignorance is rational if the search costs outweigh the

expected benefits (Stigler, 1961). For the SCSD, the expected benefits of thorough

preparation are low: only six out of the several hundred audience members who travel

to the recording studio actually play the SCSD, and only a fraction of those six end

up in a relatively difficult choice situation where knowing the optimal strategy may

truly be helpful. For many laypeople, the low ex-ante expected benefits probably

do not outweigh the costs of looking up and reading a rather complicated academic

paper.

The pattern of underspinning in the SCSD can be adequately captured by limited

foresight. This well-documented bias, however, is not the only possible explanation.

One alternative is rationality neglect. Several studies show that people tend to

underestimate the rationality of their competition in strategic settings (Camerer and

Lovallo, 1999; Weizsäcker, 2003; Rogers et al., 2009; Greenwood and Hanson, 2015).

In the SCSD, overestimating the likelihood that others make mistakes generally

lowers the perceived incentive to spin, especially for Contestant 1.

Underspinning might also result from overestimation of conjunctive events, which

is the tendency to overestimate the likelihood of an event that requires the simulta-

neous occurrence of multiple conditions (Slovic, 1969; Cohen et al., 1972; Bar-Hillel,

1973; Vieider, 2011; Baillon et al., 2013). For Contestant 1, winning the SCSD

requires the conjunction of beating Contestant 2 and beating Contestant 3. Over-

estimating conjunctive events thus elevates the subjective probability of winning,

both for stopping and for spinning, but the impact is larger for stopping.27

In the present paper, we chose not to pursue these alternative explanations.

Implementing them into our structural models is not straightforward and requires

several additional modeling choices, thereby increasing both the degrees of freedom

and the complexity. Moreover, the empirical fit of the limited foresight model leaves

little room for improvement. Further research can use experiments with modifica-

27If Contestant 1 stops, the probability of winning equals the probability of the conjunctive
event of beating both Contestant 2 and Contestant 3. If Contestant 1 spins, the probability of
winning is an average of not only such conjunctive probabilities (for every potential score of 100
or less) but also the probability of zero (for every potential score exceeding the maximum of 100).
Moreover, the conjunctive probabilities after spinning and improving the score are higher than
those after stopping, limiting the scope for overestimation.
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tions of the SCSD to try to shed further light on the possible explanations behind

the deviations from the SPNE. It will, however, always remain unclear whether such

laboratory findings generalize to our high-stakes setting, as the size and nature of

deviations from the SPNE may well depend on the stakes.

The Price Is Right can be seen as an atypical setting to test the descriptive

validity of backward induction, and critics may therefore view it as a negative dis-

traction. However, novel settings should not be too easily dismissed as they can

provide rare opportunities for relevant tests of economic theory (List, 2023). The

SCSD uniquely allows for a large-scale analysis of strategic decision making at stakes

that are impossible to replicate in the lab.

At the same time, following List (2023), it is important to explicitly consider

how selection procedures and the naturalness of our setting may affect the gener-

alizability of our results. Before contestants play the SCSD, they self-selected into

the audience, were selected from the audience by the producers, and won a One Bid

game. Unfortunately, it is unclear whether these elements of selection have led to

any under- or overrepresentation of strategically sophisticated contestants. Selection

effects, however, are inevitable in any lab or field setting. Moreover, SCSD contes-

tants are quite diverse in terms of demographic characteristics, such as age, gender,

ethnicity, and education, and as a group they seem to resemble a cross-section of

the general population more closely than the subject pools of most laboratory ex-

periments.

The setting in which contestants make their decisions—with a lively studio au-

dience and camera’s reminding them of the millions of TV viewers—likely induces

stress. Psychological research indicates that the mere presence of others can fa-

cilitate performance in simple tasks but impair it in more complex ones (Zajonc,

1965; Bond and Titus, 1983). We cannot fully dismiss the impact the setting may

have had on contestants, but prior research suggests that our findings are unlikely

to be an artifact of the setting. Tenorio and Cason (2002) compare the behavior of

laboratory subjects who play the SCSD to that of real contestants, and Antonovics

et al. (2009), Healy and Noussair (2004), and Baltussen et al. (2016) make such

a comparison for other games or game shows. None of these studies find that the

patterns of behavior are different between the two types of settings. Moreover, ev-

ery setting—including the experimental laboratory—is in some way special. It is

impossible to study behavior under each and every possible set of conditions, and

hence the optimal approach is to investigate if similar patterns are found in settings

that are markedly different.

The finding that contestants in the SCSD often deviate from the optimal strategy
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and instead behave as if they adopt a simplified representation of the game adds to

an ongoing debate about whether cognitive biases disappear in high-stake situations

(Levitt and List, 2007a,b). Experimental research by Smith and Walker (1993),

Cooper et al. (1999), Rapoport et al. (2003), and Parravano and Poulsen (2015)

finds that the decisions of subjects tend to be closer to equilibrium play when the

monetary incentives are higher. At the same time, Camerer and Hogarth (1999) and

Enke et al. (2023) find that cognitive errors in experiments are largely impervious

to the size of the stakes. Our results align with those of the latter two studies, and

show that random and systematic violations of game-theoretic predictions abound

in a high-stakes game that subjects can be expected to be highly familiar with.
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Appendix

Table A1: Data coverage per season

Season Episodes SCSDs Showcases

1979-1980 32 61 60
1980-1981 30 54 58
1981-1982 31 59 60
1982-1983 192 368 378
1983-1984 93 174 179
1984-1985 16 28 31
1985-1986 15 27 29
1986-1987 65 122 118
1987-1988 22 41 39
1988-1989 25 49 49
1989-1990 25 49 49
1990-1991 15 27 28
1991-1992 83 163 163
1992-1993 80 151 160
1993-1994 75 134 92
1994-1995 111 207 175
1995-1996 112 201 223
1996-1997 140 227 268
1997-1998 116 189 219
1998-1999 130 240 256
1999-2000 134 264 265
2000-2001 171 309 341
2001-2002 182 363 364
2002-2003 173 345 346
2003-2004 170 340 294
2004-2005 159 316 255
2005-2006 168 336 267
2006-2007 150 249 125
2007-2008 179 354 353
2008-2009 190 372 375
2009-2010 188 375 374
2010-2011 189 370 372
2011-2012 192 376 382
2012-2013 186 361 370
2013-2014 193 378 386
2014-2015 187 369 373
2015-2016 193 383 385
2016-2017 178 355 356
2017-2018 175 350 350
2018-2019 176 350 351
2019-2020 158 313 316
2020-2021 136 272 272

Notes: The table displays the coverage of our
sample per season. Episodes is the number of
episodes for which we have the data for at least
one of the two SCSDs. SCSDs is the number of
SCSDs for which we have all spinning decisions
and outcomes. Showcases is the number of show-
cases for which we know the stated retail price.
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Table A2: Costs of deviations from the SPNE

First spin C1 C2

5 $3,264 $5,223
10 $3,247 $5,123
15 $3,216 $4,939
20 $3,166 $4,668
25 $3,094 $4,306
30 $2,995 $3,850
35 $2,861 $3,295
40 $2,684 $2,638
45 $2,454 $1,874
50 $2,161 $1,002
55 $1,800 $55
60 $1,189 $1,008
65 $393 $2,189
70 $555 $3,493
75 $1,796 $4,923
80 $3,333 $6,484
85 $5,211 $8,179
90 $7,482 $10,012
95 $10,199 $11,987
100 $13,585 $14,269

Notes: The table shows the costs of deviating
from the SPNE when the expected showcase value
is $30,000 and bonus prizes are $1,000, $10,000,
and $25,000. For Contestant 2 (C2), the costs
are for choice situations where their first-spin out-
come beats the score of Contestant 1 (C1). Under
these conditions, the stopping thresholds are 70
(C1) and 60 (C2).
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Table A3: Estimation results under different levels of risk aversion

SPNE Baseline Omission bias Limited foresight OB & LF

Panel A: Medium risk aversion

λ - - 5.141 (0.103) 5.675 (0.121) 5.943 (0.149) 5.971 (0.149)
γ - - - - 0.235 (0.013) - - 0.046 (0.024)
β - - - - - - 0.439 (0.024) 0.379 (0.039)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,981 -1,836 -1,788 -1,786
AIC - 3,965 3,676 3,579 3,578

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.959 0.952 0.943 0.953 0.959 0.953 0.947
Hit rate (difficult) 0.729 0.795 0.729 0.795 0.815 0.703 0.817 0.795 0.817 0.728
Brier score 0.066 0.041 0.047 0.035 0.037 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.182 0.172 0.133 0.185 0.121 0.173 0.120 0.173
Spinning bias -0.063 -0.014 -0.043 -0.001 -0.014 0.021 0.008 -0.001 0.007 0.004
Spinning bias (difficult) -0.258 -0.066 -0.229 -0.001 -0.103 0.113 0.008 0.004 0.001 0.027

Panel B: Low risk aversion

λ - - 2.155 (0.044) 2.344 (0.050) 2.456 (0.061) 2.461 (0.061)
γ - - - - 0.508 (0.032) - - 0.055 (0.057)
β - - - - - - 0.405 (0.024) 0.375 (0.039)

N - 14,559 14,559 14,559 14,559
Log-likelihood - -1,956 -1,839 -1,790 -1,790
AIC - 3,915 3,682 3,585 3,586

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Hit rate 0.934 0.959 0.934 0.960 0.952 0.943 0.953 0.960 0.953 0.945
Hit rate (difficult) 0.729 0.795 0.729 0.796 0.815 0.701 0.817 0.796 0.817 0.714
Brier score 0.066 0.041 0.045 0.035 0.037 0.037 0.034 0.035 0.034 0.035
Brier score (difficult) 0.271 0.205 0.175 0.174 0.133 0.186 0.120 0.175 0.120 0.175
Spinning bias -0.063 -0.014 -0.040 0.002 -0.014 0.021 0.007 0.002 0.006 0.004
Spinning bias (difficult) -0.258 -0.066 -0.216 0.011 -0.104 0.112 0.003 0.015 0.000 0.027

Notes: The table shows the results for medium and low degrees of risk aversion. Panel A (Panel
B) shows the results under the assumption that contestants have CARA utility, with a certainty
equivalent of $5,000 ($10,000) for a 50-50 lottery of winning $25,000 or $0.
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Table A4: Optimal choices and prior winnings

All choices Difficult choices

Model 1 Model 2 Model 3 Model 4

Prior winnings 0.00003 0.0003
(0.00005) (0.0002)

ln(Prior winnings) 0.001 0.001
(0.002) (0.007)

Fixed effects Yes Yes Yes Yes
Observations 12,665 12,665 2,491 2,491

Notes: The table shows regression results for the relationship be-
tween the optimality of play and prior winnings. The dependent
variable is a dummy variable that takes the value of 1 if the con-
testant follows the optimal strategy according to the SPNE, and 0
otherwise. Prior winnings is the inflation-corrected monetary value
of the prizes won by the contestant prior to the SCSD, in thousands
of dollars. ln(Prior winnings) is the natural logarithm of Prior win-
nings. Fixed effects allow for differences in the average likelihood of a
departure from optimality across first-spin outcomes, separately for
Contestant 1 and for Contestant 2, and, in the case of Contestant
2, for whether their first spin beats or ties the previous contestant’s
score. Models 1 and 2 are estimated on all observations for which
prior winnings are available in our data; Models 3 and 4 are esti-
mated on relatively difficult choice situations only. Difficult choices
are choices where the first-spin outcome is no more than two steps
below the stopping threshold and no more than one step above it.
Standard errors are in parentheses.
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